A luminescent terbium coordination polymer as a multifunctional

water-stable sensor for detection of Pb²⁺ ions, PO₄³⁻ ions, Cr₂O₇²⁻ ions,

and some amino acids

Zhang Li, Zhiying Zhan, Ming Hu*

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China. Tel.: +86-471-4992981. E-mail addresses: hm988@126.com.

Complex 1			
Formula	C ₁₉ H ₁₁ NO ₈ Tb		
Formula Weight	540.21		
T/K	293(2)		
Crystal System	Monoclinic		
Space Group	C2/c		
a (Å)	28.153(5)		
b (Å)	7.2450(5)		
<i>c</i> (Å)	21.869(3)		
α (°)	90		
<i>b</i> (°)	120.140(10)		
γ (°)	90		
<i>V</i> (A ³)	3857.5(9)		
Ζ	8		
D calc.(g cm ⁻³)	1.860		
$\mu (\mathrm{mm}^{-1})$	18.462		
F (000)	2088		
Rint	0.0312		
GOF	1.081		
R_1^{a}	0.0530		
$\omega R_2^{\rm b} \left[{\rm I} > 2s \left({\rm I} \right) \right]$	0.1464		
R_1 (all data)	0.0649		
ωR_2 (all data)	0.1707		
Δr_{max} and $_{min}$ (e Å ⁻³)	2.305, -2.026		

Table S1. The crystallographic data for complex 1

		Complex 1	
Tb(1)-O(3)	2.356(5)	Tb(1)-O(4)#1	2.458(6)
Tb(1)-O(8)	2.360(6)	Tb(1)-O(2)#2	2.492(5)
Tb(1)-O(2)	2.362(5)	Tb(1)-O(1)#2	2.522(6)
Tb(1)-O(6)	2.376(6)	Tb(1)-O(3)#1	2.553(5)
Tb(1)-O(7)#1	2.405(5)		
O(3)-Tb(1)-O(8)	130.7(2)	O(3)-Tb(1)-O(2)	72.84(18)
O(8)-Tb(1)-O(2)	79.6(2)	O(3)-Tb(1)-O(6)	72.71(19)
O(8)-Tb(1)-O(6)	70.9(2)	O(2)-Tb(1)-O(6)	96.84(19)
O(3)-Tb(1)-O(7)#1	68.84(19)	O(8)-Tb(1)-O(7)#1	142.45(19)
O(2)-Tb(1)-O(7)#1	77.55(18)	O(6)-Tb(1)-O(7)#1	141.09(19)
O(3)-Tb(1)-O(4)#1	139.3(2)	O(8)-Tb(1)-O(4)#1	89.9(2)
O(2)-Tb(1)-O(4)#1	118.92(18)	O(6)-Tb(1)-O(4)#1	135.9(2)
O(7)#1-Tb(1)-O(4)#1	75.9(2)	O(3)-Tb(1)-O(2)#2	71.13(17)
O(8)-Tb(1)-O(2)#2	138.3(2)	O(2)-Tb(1)-O(2)#2	140.13(9)
O(6)-Tb(1)-O(2)#2	88.34(18)	O(7)#1-Tb(1)-O(2)#2	80.34(18)
O(3)-Tb(1)-O(1)#2	111.8(2)	O(8)-Tb(1)-O(1)#2	86.4(2)
O(2)-Tb(1)-O(1)#2	164.03(18)	O(6)-Tb(1)-O(1)#2	71.14(19)
O(7)#1-Tb(1)-O(1)#2	118.42(18)	O(4)#1-Tb(1)-O(1)#2	68.23(19)
O(2)#2-Tb(1)-O(1)#2	52.30(18)	O(3)-Tb(1)-O(3)#1	134.56(14)
O(8)-Tb(1)-O(3)#1	65.91(19)	O(2)-Tb(1)-O(3)#1	69.96(17)
O(6)-Tb(1)-O(3)#1	136.38(18)	O(7)#1-Tb(1)-O(3)#1	128.89(17)
O(4)#1-Tb(1)-O(3)#1	51.35(18)	O(2)#2-Tb(1)-O(3)#1	121.9(2)
O(2)#2-Tb(1)-O(3)#1	128.89(17)	O(1)#2-Tb(1)-O(3)#1	111.14(18)
Symmetry transformati	ons used to generate	e equivalent atoms: $\# 1 - x + 1/2$	2,y-1/2,-z+3/2
#2 -x+1/2,y+1/2,-z+3/2	#3 -x+1/2,-y	v+5/2,-z+2	

Table S2. Selected bond lengths [Å] and angles [°] for 1

 Table S3. Calculation of fluorescence quantum yield of complex 1

Complex 1				
$v_{00} (cm^{-1})$	20367	A ₀₀	330.457	
v_{01} (cm ⁻¹)	18349	A ₀₁	50	
v_{02} (cm ⁻¹)	17007	A ₀₂	189.659	
v_{03} (cm ⁻¹)	16155	A ₀₃	179.857	
$I_{01}(a.u)$	5101	Ar	749.973	
$I_{02}(a.u)$	37420	τ (ms)	0.880	
I ₀₂ /I ₀₁	7.336	1/τ	1.136	
η	%	6	6.0	

Complexes	K _{sv} (M ⁻¹)	Detection Limit	On - Off Response	Medium	Ref.
[Ln ₂ (FDC) ₃ DMA(H ₂ O) ₃]DMA ₄ .5H ₂ O	2.97×10^{6}	8.22 × 10 ⁻⁶ M	Turn-on	H ₂ O	1
Tb-1	/	$3.43 \times 10^{-6} M$	Turn-on	acetonitrile	2
MOF-5	/	$0.2 \times 10^{-7} M$	Turn-on	H ₂ O	3
$[Tb(L)(H_2O)_5]_n$	1.75×10^{4}	$0.7 \times 10^{-7} M$	Turn-on	H ₂ O	4
$[Tb(ppda)(npdc)_{0.5}(H_2O)_2]_n$ (1)	1.05×10^{5}	9.44 × 10 ⁻⁵ M	Turn-on	H ₂ O	This work

Table S4. Comparison of literature reports for CPs as sensors of Pb²⁺

Table S5. Comparison of literature reports for CPs as sensors of $Cr_2O_7^{2-}$

Complexes	K _{sv} (M ⁻¹)	Detection Limit	On - Off Response	Medium	Ref.
[Eu(Hpzbc) ₂ (NO ₃)]·H ₂ O	/	2.2×10^{-5} M	Turn-off	ethanol	5
${[Tb(TATAB)(H_2O)_2] \cdot NMP \cdot H_2O}n$	1.11×10^{4}	1.0×10^{-5} M	Turn-off	H ₂ O	6
[EuL(CH ₃ COO)Cl] _n	1.15×10^{4}	8.63 × 10 ⁻⁵ M	Turn-off	H ₂ O	7
${[Zn_4(Trz)_6(HCOO)_2]}_n$	9.72×10^{3}	5.82×10^{-4} M	Turn-off	H ₂ O	8
$[Zn(L)(H_2L)]_n$	1.89×10^{3}	1.14 × 10 ⁻⁵ M	Turn-off	H ₂ O	9
[Eu(Hmcd)(H ₂ O)(DMF) ₂] _n	2.91×10^{3}	1.34×10^{-5} M	Turn-off	H ₂ O	10
$[Tb(ppda)(npdc)_{0.5}(H_2O)_2]_n$ (1)	4.97×10^{6}	6.00 × 10 ⁻⁵ M	Turn-off	H ₂ O	This work

Table S6. Comparison of literature reports for CPs as sensors of PO_4^{3-}

Complexes	K _{sv} (M ⁻¹)	Detection Limit	On - Off Response	Medium	Ref.
${[Eu(bcpt)(HCOO)] \cdot 0.5H_2O}_n$	1.27×10^{4}	$2.74 \times 10^{-4} M$	Turn-off	H ₂ O	11
$[Ln(DLDA)(DMF)(H_2O)(COO)]_n$	1.82× 10 ³	1.88 × 10 ⁻⁵ M	Turn-off	H ₂ O	12
$\{[Zn_4(L^{3-})_2(O^{2-})(H_2O)_2]\cdot 4EtOH\}_n$	3.69× 10 ⁴	0.1 × 10 ⁻⁶ M	Turn-off	H ₂ O	13
$[(CH_3)_2NH_2]_6[M_6(OBA)_6(L_1)_3(SO_4)_2]\cdot SO_4\cdot x$	6.99× 10 ³	6.5 × 10 ⁻⁶ M	Turn-off	H ₂ O	14
[Tb(ppda)(npdc) _{0.5} (H ₂ O) ₂] _n (1)	4.48×10^{4}	1.01 × 10 ⁻⁵ M	Turn-off	H ₂ O	This work

Complexes	K _{sv} (M ⁻¹)	Detection Limit	On - Off Response	Medium	Ref.
$[Zr_6O_4(OH)_8(H_2O)_4(L)_2]\cdot 8DMF\cdot 10H_2O$	3.75×10^{5}	9.40×10^{-8} M	Turn-off	H ₂ O	15
$[Tb(ppda)(npdc)_{0.5}(H_2O)_2]_n$ (1)	4.81×10^{5}	1.43 × 10 ⁻⁵ M	Turn-off	H ₂ O	This work

 Table S7. Comparison of literature reports for CPs as sensors of Tyr

Table S8. Comparison of literature reports for MOFs as sensors of Trp

Complexes	K _{sv} (M ⁻¹)	Detection Limit	On - Off Response	Medium	Ref.
Cu-MOF-modified	/	5.46 × 10 ⁻⁵ M	Turn-on	H ₂ O	16
Zn-Hbtc-BPY/Tb ³⁺	/	3.10×10^{-6} M	Turn-on	H ₂ O	17
[Zn ₄ (pta) ₃ (H ₂ O) _{1.5}]	/	4.29×10^{-8} M	Turn-on	H ₂ O	18
$[La(L_2)(H_2O)]$ ·solvent	1.69×10^{3}	1.67 × 10 ⁻⁴ M	Turn-off	H ₂ O	19
[Tb(ppda)(npdc) _{0.5} (H ₂ O) ₂] _n (1)	2.60×10^{5}	6.99 × 10 ⁻⁵ M	Turn-on	H ₂ O	This work

Amino acids	Singlet state energy level (eV) light wavelength (nm)	Excitation
Alanine	5 2382	236 69
Arginine	5.2562	236.36
Agnoragina	5 1 4 9 4	230.30
Asparagine	5.1464	240.82
Aspartic Acid	5.2749	235.04
Cysteine	5.1/6/	239.50
Glutamine	5.3442	232.00
Glutamic Acid	5.3536	231.59
Glycine	5.4098	229.19
Histidine	4.6439	266.98
Isoleucine	5.3979	229.69
Leucine	5.2784	234.89
Lysine	5.4104	229.16
Methionine	5.3779	230.54
Phenylalanine	4.9072	252.66
Proline	5.1332	241.54
Serine	5.2474	236.28
Threonine	5.2171	237.65
L-Tryptophan	4.3051	287.99
D-Tryptophan	4.3527	284.84
Tyrosine	4 8780	254 17
Valine	5 3902	230.02
v unne	5.5702	250.02
H ₂ npdc	3.8111	326.01

Table S9. Calculation results of singlet state energy level and the corresponding wavelength of

excitation light of selected amino acids.

Fig. S1 The PL spectra of H₂ppda (solid line) and H₂npdc ligand (dotted line).

Fig. S2 Solid state excitation and emission spectra of compond 1 at room temperature.

The PXRD patterns of 1 dispersed in pH aqueous solutions.

Fig. S4 The fluorescence decay and fit curve for 1

Fig. S5 Comparison of fluorescence intensity of 1 in various cations aqueous solutions and after

addition of 300µL Pb2+.

Fig. S6 (a) Enhancing and recovery test of 1 in Pb(NO₃)₂ aqueous solutions. (b) PXRD patterns of

Fig. S7 (a) Time-dependent emission spectra fort 1 detecting Pb^{2+} ions. (b)The curve for fluorescence intensity of 1 versus time after addition of 300 μ L of Pb^{2+} ions.

Fig. S8 (a) PXRD patterns of 1 and 1 soaked in $Pb(NO_3)_2$ aqueous solutions; (b) the UV-Vis

adsorption spectra of 1, various cations and the excitation spectrum of 1.

Fig. S9 The fluorescence decay and fit profiles of $Pb^{2+}@1$.

Fig. S10 Fluorescence intensity histogram of 1 in different anions and mixed anions, (a) for PO_4^{3-1} ions and (b) for CrO_7^{2-1} ions.

Fig. S11 (a) Quenching and recovery test of 1 detecting PO_4^{3-} ions. (b) Quenching and recovery test of 1 detecting $Cr_2O_7^{2-}$ ions. (c) and (d) PXRD patterns after recovery test.

Fig. S12 PXRD patterns of 1 and 1 soaked in PO_4^{3-} or $Cr_2O_7^{2-}$ aqueous solutions.

Fig. S13 the UV-Vis adsorption spectra of various anions and the excitation spectrum of 1.

Fig. S14 The fluorescence decay and fit profiles of $PO_4^{3-}@1$.

Fig. S15 (a) Comparison of fluorescence intensity of **1** at 545nm in different amino acids solutions and after addition of Tyr. (b) Comparison of fluorescence intensity of **1** at 465nm in different

amino acids slolutions and after addition of Trp.

Fig. S16 (a) PXRD patterns of 1 and 1 immersed in Tyr or Trp. (b) FTIR spectra of Tyr@ 1 and

Trp@ 1.

Fig. S17 The adsorption spectra of various amino acids and 1, and the excitation spectrum of 1.

References

- L. Li, Q. Chen, Z. Niu, X. Zhou, T. Yang and W. Huang, J. Mater. Chem. C, 2016, 4, 1900-1905.
- B. Xu, X. Tang, J. Zhou, W. Chen, H. Liu, Z. Ju and W. Liu, *Dalton Trans.*, 2016, 45, 18859-18866.
- 3. S. Xu, L. Zhan, C. Hong, X. Chen, X. Chen and M. Oyama, Sens. Actuators, B, 2020, 308, 127733.
- 4. G. Ji, J. Liu, X. Gao, W. Sun, J. Wang, S. Zhao and Z. Liu, J. Mater. Chem. A, 2017, 5, 10200-10205.
- 5. P. Li, G. Liu, Y. Z. Li, L. Hou, Y. Y. Wang and Z. Zhu, Inorg. Chem., 2016, 55, 3952-3959.
- 6. G. X. Wen, M. L. Han, X. Q. Wu, Y. P. Wu and L. Ma, Dalton Trans., 2016, 45, 15492.
- 7. C. Chen, X. Zhang, P. Gao and M. Hu, J. Solid State Chem., 2018, 258, 86-92.
- 8. J.-Y. Zou, L. Li, S.-Y. You and S. W. Zhang, Inorg. Chim. Acta, 2019, 498, 119126.
- Y. Wu, Y. Huang, Y. Wang, X. Zou, J. Wang and W. Wu, J. Coord. Chem., 2018, 71, 3994-4006.
- X. Li, J. Tang, H. Liu, K. Gao, X. Meng, J. Wu and H. Hou, *Chem Asian J*, 2019, 14, 3721-3727.
- 11. L. Li, J.-Y. Zou, S.-Y. You, Y.-W. Liu, H.-M. Cui and S. W. Zhang, *Dyes and Pigments*, 2020, **173**, 108004.
- 12. B. Li, J. Zhou, F. Bai and Y. Xing, Dyes and Pigments, 2020, 172, 107862.
- 13. G. Ji, X. Gao, T. Zheng, W. Guan, H. Liu and Z. Liu, Inorg. Chem., 2018, 57, 10525-10532.
- 14. Q. B. Wen, Z, X, Ying and Z, J, Ping, Cryst. Growth Des. 2020, 20, 5120-5128
- 15. J. M. Liu, J. X. Hou, J. Liu, X. Jing, L. J. Li and J. L. Du, J. Mater. Chem. C, 2019, 7, 11851-11857.
- 16. W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan, H. Wang, B. Ning, H. Xu and X. Huang, *Adv. Mater.*, 2018, **30**, e1800917.
- 17. H. Pan, S. Xu and Y. Ni, Sens. Actuators, B, 2019, 283, 731-739.
- J. Zhang, Y. Huang, D. Yue, Y. Cui, Y. Yang and G. Qian, J. Mater. Chem. B, 2018, 6, 5174-5180.

19. H. N. Abdelhamid, A. B. Gómez, B. M. Matute, Z. X. Dong, *Microchim. Acta*, 2017, **184**, 3363-3371.