
Synthesis of NbSe₂ Single-crystalline Nanosheet Arrays for UV Photodetectors

Xin Hu¹, Enze Xu², Shuguang Xiang¹, Zhicheng Chen¹, Xue Zhou¹, Ning Wang¹, Hongmei Guo¹, Limin Ruan¹, Yongbin Hu¹, Changrun Li³, Dong Liang^{1*}, Yang Jiang^{2*}, Guohua Li^{1*}

¹ School of Electronics and Information Engineering, National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.

² School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.

³ Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601. P. R. China

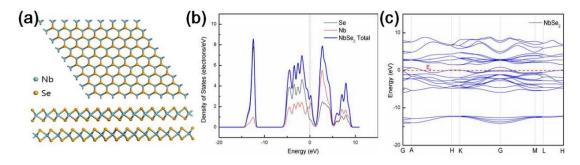


Figure S1. (c) The I-V curve of the NbSe₂ device is under dark, 254nm and 365nm laser irradiation. (d) The I-T curve of the NbSe₂ device at 0.3V bias under the irradiation of a 254nm laser.

Fig S1 shows the *I-V* and *I-T* characteristics of the NbSe2 nanosheet photodetector. Linear *I-V* indicates good contact between NbSe₂ nanosheets and electrodes. The Fig S1a clearly shows that when a device is measured in darkness, 356 nm and 254 nm UV light irradiation, the current increases gradually. The resistivity of the NbSe₂ nanosheet arrays is estimated to be 2.5 x 10⁻³ Ω ·m under dark condition and while 7.5 x 10⁻⁴ Ω ·m and 6.7 x 10⁻⁴ Ω ·m under 365nm and 254nm UV light irradiation, respectively. Fig S1b shows the *I-T* (current-time) curve of the NbSe₂ device under 254 nm UV light irradiation. When the bias reaches 0.3V, the measured current is 1.8 and 0.4 mA, respectively. The on/off ratio of this device is 4.5, and the response time for both rise and fall is ~7 ms. The fast response to UV light of the devices is due to the high crystal quality of NbSe₂ nanosheets.

The denstiy fundtional theory (DFT) computations were performed using the projector augmented wave (PAW) method and Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation fuctional¹. Monkhorst-Pack k-point grid of 8 ×8

×1 was used for structural relaxation, and 16 ×16 ×1 for self-consistent calculations. The convergence threshold was 10^{-4} eV in energy and 10^{-3} eV/Å in force. The cutoff energy used for the plane-wave basis set is 400 eV.

Figure S2. (a) Hexagonal crystal structure of 2H-NbSe₂, The blue and yellow balls represent Nb and Se atomic columns. (b) Using GGA-PBE to approximately estimate the state density of 2H-NbSe₂. (c) The energy band structure of NbSe₂ along the brillouin belt in the direction of high symmetry.

To further understand the microstructure and electrical properties of the NbSe₂ nanosheet arrays, we employed density functional theory (DFT) computation on 2H-NbSe₂. Fig S2(a) shows the overall structure of NbSe₂, which belongs to the hexagonal system with space group P-6m2. Each Nb atom is surrounded by six Se atoms, and has triangular prism symmetry ², ³. The stacking along the c axis starts from Se-Nb-Se, and a slab is formed in this order, with a strong covalent bond between the three atomic layers and a one-weak bond between the vdws-type slabs. Fig S2(b) shows the atom projected density of states (DOS) diagram for NbSe₂. It obviously shows that there is a partial wave DOS across the Fermi level, which confirms the semimetal nature of the 2H- NbSe₂. The DOS below the Fermi level is dominated by the Se element and energy above the Fermi level is dominated by the

Nb element¹. The energy band structure of 2H-NbSe₂ along the highly symmetric direction is shown in Fig S2(c), where the GGA-PBE approximation is used in the calculation. As shown in Fig S2(c), the compound exhibits a special energy band structure, which represents a layered structural system, in which the intermediate band located in energy gap around E_{f} . The presence of bands crossing the E_{f} means that 2H-NbSe₂ is in semimetic state, and these bands originate mainly from Se 4p and partial from Nb 4d states, indicating that there is a hybrid between them². The calculated band structure of 2H-NbSe₂ is validated by the experimental data from angle-resolved light emission spectra (ARPES)⁴.

3 B. Guster, C. Rubio-Verdu, R. Robles, J. Zaldivar, P. Dreher, M. Pruneda, J. A. Silva-Guillen, D. J. Choi, J. I. Pascual, M. M. Ugeda, P. OrdejonandE. Canadell, *Nano Lett*, 2019, **19**, 3027-3032.

4 D. J. Rahn, S. Hellmann, M. Kalläne, C. Sohrt, T. K. Kim, L. KippandK. Rossnagel, *Physical Review B*, 2012, **85**.

¹ A. Khan, H. U. Din, M. Idrees, F. Khan, T. A. Alrebdi, C. V. Nguyen, M. ShafiqandB. Amin, *Physics Letters A*, 2019, *383*, 125867.

² H. Kouarta, K. ZanatandH. Belkhir, *Journal of Superconductivity and Novel Magnetism*, 2018, **32**, 805-819.