Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Support Information

Hydrates of Adenosine 3',5'-Cyclic Monophosphate Sodium and Their Transformation

Pengpeng Yang^a, Junyang Jin^a, Qingshi Wen^b, Chenguang Lin^a, JinQiu Fu^c, Wei Zhuang^a, Jinglan Wu^a,

Dong Liu^{a*}, Chenjie Zhu^{a*}, and Hanjie Ying^a

^aNational Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China

^bIndustrial Biotechnology Institute of Jiangsu Industrial Technology Research Institute, Nanjing, China ^cSchool of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

Table of contents

Figure S1. H-bond network pictures of water inclusion for the Forms I-IV.

Figure S2. The crystal packing diagrams for the Forms I-IV.

Figure S3. Sodium coordination spheres for the Forms I-IV.

Figure S4. Arrangement profiles of the host molecule packing for the Forms I-IV.

Figure S5. Comparison of the PXRD patterns of sample used in experiments and simulated lines from single-crystal structure.

Table S1. The sodium ions coordination for the Forms I-IV.

Table S2. The hydrogen bond information of the Forms I-IV.

The Crystallographic data of Form III and Form IV for the cAMPNa refers to our previous report¹.

Figure S1. H-bond network pictures of water inclusion for the Forms I-IV. Cyan dash line denotes the hydrogen bond interaction. Yellow dots indicate the sodium ions.

Figure S2. The crystal packing diagrams for the Forms I-IV.

(a) Form I, (b) Form II, (c) Form III, (d) Form IV

Figure S3. Sodium coordination spheres for the Forms I-IV. (a) Form I, (b) Form II, (c) Form III, (d) Form IV

Figure S4. Arrangement profiles of the host molecule packing for four cAMPNa crystal forms. (a) Form I, (b) Form II, (c) Form III, (d) Form IV

Figure S5. Comparison of the PXRD patterns of sample used in experiments and simulated lines from single-crystal structure.

Table S1. The sodium ions coordination for the Forms I-IV.

Coordination		Bond length(angstrom)	Acceptor	
cAMPNa·2H ₂ O				
Na	-04	2.311(5)	(P -O)	
Na	-07	2.375(7)	crystal water	
Na	-N5_b	2.555(7)	base	
Na	-O5_f	2.434(4)	ribose rings	
Na	-O4_h	2.338(5)	(P -O)	
cAMPNa·4H ₂ O				
Na1	-O5	2.375(2)	(P -O)	
Na1	-013	2.413(2)	crystal water	
Na1	-O14	2.378(2)	crystal water	
Na1	-015	2.387(2)	crystal water	
Na1	-O16	2.455(2)	crystal water	
Na1	-O17	2.366(2)	crystal water	
Na2	-05	2.393(2)	(P -O)	
Na2	-012	2.664(2)	(P -O)	
Na2	-016	2.340(2)	crystal water	
Na2	-017	2.728(2)	crystal water	
Na2	-O18	2.394(2)	crystal water	
Na2	-N2_a	2.531(2)	base	
cAMPN	la∙5H ₂ O			
Na1	-09	2.461(5)	crystal water	
Na1	-O10	2.368(4)	crystal water	
Na1	-O5_a	2.372(4)	(P -O)	
Na1	-06	2.359(3)	(P -O)	
Na1	-O9_a	2.483(5)	crystal water	
Na1	-O10_a	2.413(4)	crystal water	
cAMPNa· CH ₃ OH·3H ₂ O				
Na1	O4	2.383(3)	(P -O)	
Na1	O8	2.370(3)	crystal water	
Na1	011	2.483(4)	crystal water	
Na1	O8_a	2.408(3)	crystal water	
Na1	O3_b	2.430(3)	(P -O)	
Nal	O11_b	2.456(4)	crystal water	

 Table S2. The hydrogen bond information of the Forms I-IV.

D-HA*	D(D-H) / Å	d(HA) / Å	d(DA)/ Å	<dha></dha>
cAMPNa·2H ₂ O				
OW HWB O2	0.8500	2.4200	3.061(10)	133.00
OW HWA N3	0.8500	2.5300	3.361(17)	166.00
N4 H4A O6	0.8600	2.4300	3.210(8)	150.00
N4 H4B O2	0.8600	2.5600	3.011(10)	114.00

N4	H4B O4	0.8600	2.2200	3.066(10)	167.00
06	H6A O3	0.8200	1.7900	2.602(8)	172.00
07	H7B N2	0.8500	2.4100	2.948(9)	122.00
07	H7C O6	0.8500	2.5600	3.394(7)	168.00
07	H7C O3	0.8500	2.5600	2.929(7)	107.00
C5	H5B O1	0.9800	2.5200	3.359(8)	144.00
C10	H10A OW	0.9300	2.5400	3.411(18)	157.00
cAMI	$PNa \cdot 4H_2O$				
N1	H1A O18	0.8600	2.1100	2.927(3)	159.00
N1	H1B N7	0.8600	2.1100	2.929(3)	158.00
01	H1C N8	0.8200	1.8900	2.700(3)	171.00
N6	H6A N5	0.8600	2.3100	3.171(3)	177.00
N6	H6B 013	0 8600	2 2000	3.024(3)	161.00
07	H7A N3	0.8200	2,0700	2,874(3)	167.00
013	H13A O2	0.8300	2 2200	2.071(3) 2.944(2)	146.00
013	H13B 019	0.8100	2.2200	3 153(3)	165.00
013	H14A 017	0.9500	1 8400	2 768(3)	166.00
014	H14B N10	0.9000	1.9500	2.700(3) 2.827(3)	165.00
015	H15A O3	0.9600	2 3400	3 132(3)	140.00
015	H15B 020	0.9000	2.0300	2847(4)	168.00
015	- H16A = 012	0.0500	2.0000	2.047(4) 2.884(3)	166.00
016	IIIOA 012 H16B 00	0.2000	2.0000	2.00+(3)	1/0 00
010	H17B O4	0.8600	2.2000	2.900(2) 2.886(3)	164.00
017		0.8000	2.0300	2.880(3)	1/2 00
018		0.9000	2.2300	3.040(2) 3.035(2)	146.00
010	$-1110A \dots O0$	0.9000	2.3200	3.033(2)	161.00
010	-11100 04	1.0200	1.9200	2.772(2)	165.00
019	HI9A 014	1.0300	1.7600	2.763(3)	103.00
019		0.8700	1.9300	2.813(3) 2.700(2)	171.00
020		0.9700	1.0400	2.799(3)	172.00
O20	H20D 04	0.9300	1.9700	2.895(3)	1/3.00
	HI OI0	0.9300	2.4900	3.258(3)	140.00
C5	H5 019	0.9300	2.4800	3.36/(3)	160.00
C14	H14 015	0.9300	2.5700	3.466(3)	163.00
CAMI	$PNa \cdot 5H_2O$	0.0000	2 2200	2.070(4)	1.50.00
NI	HIA UI	0.8900	2.2200	3.070(4)	159.00
02	H2A N5	0.8200	2.1100	2.928(4)	1/3.00
07	H/A 08	0.8500	2.2100	2.757(6)	122.00
07	H7B O3	0.8600	2.3300	3.087(5)	146.00
07	H7B O6	0.8600	2.4200	3.014(4)	127.00
08	H8A O7	0.8500	2.4100	2.757(6)	105.00
08	H8B N2	0.8400	2.3400	3.025(5)	139.00
09	H9A O4	0.8500	2.2200	3.012(4)	155.00
010	H10C O11	0.7000	2.1300	2.831(5)	174.00
010	H10D O7	0.7600	2.1200	2.865(5)	169.00
011	H11A O6	1.0100	1.8000	2.795(5)	166.00
011	H11B O9	0.8200	2.6000	3.298(6)	144.00
C2	H2 O2	0.9300	2.5600	3.293(5)	136.00
C4	H4 O7	0.9300	2.4200	3.239(5)	147.00
C6	H6 N3	0.9800	2.5800	3.015(4)	107.00

C8	H8 O7	0.9800	2.5800	3.378(5)	139.00
C10	H10B O2	0.9700	2.5400	3.431(5)	152.00
cAMI	PNa· CH ₃ OH·3H ₂ O				
01	H1 N5	0.8200	2.0800	2.891(4)	168.00
N1	H1B N3	0.8900	2.5700	3.088(4)	118.00
07	H7A O4	0.9200	1.8000	2.691(5)	164.00
07	H7B O3	0.8700	1.9800	2.782(5)	153.00
08	H8A O7	0.8000	1.9500	2.730(4)	163.00
08	H8B O9	0.8800	2.0400	2.884(5)	161.00
09	H9A O3	0.8200	2.1700	2.921(5)	152.00
09	H9A O6	0.8200	2.5500	3.254(5)	145.00
011	H11D O5	0.8800	2.1600	2.991(4)	158.00
011	H11E O7	0.8300	2.1300	2.850(5)	146.00
C2	H2 O1	0.9300	2.5500	3.297(5)	138.00
C6	H6 N3	0.9800	2.5800	3.007(4)	106.00
C8	H8 O9	0.9800	2.5400	3.323(5)	137.00

Note: *D=Donor, A=Acceptor; Hydrogen bonds with H.A < r(A) + 2.000 Angstroms and <DHA > more than 110 deg.

Reference

(1) Yang, P.; Lin, C.; Zhuang, W.; Wen, Q.; Zou, F.; Zhou, J.; Wu, J.; Ying, H., Insight into a direct solid-solid transformation: a potential approach for the removal of residual solvents. *CrystEngComm* **2016**, 18, (10), 1699-1704.