Proton conduction studies on four porous and nonporous

coordination polymers with different acidity and water uptake

Houting Liu,^{a, b} Rongyun Li,^b Jing Lu,^b Zhiliang Liu,^{a*} Suna Wang,^b Haiquan Tian^b

a: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and

Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China. E-mail:cezlliu@imu.edu.cn; Fax:

+86-471-4992261; Tel: +86-471-4992261.

b: Shandong Provincial Key Laboratory of Chemical Energy Storage and Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.

Table S1 the selected bond	lengths and	angels of	compounds	1-4
----------------------------	-------------	-----------	-----------	-----

1			
Cd(1)-O(1)	2.214(5)	Cd(1)-O(2)#1	2.250(5)
Cd(1)-O(3)	2.288(8)	Cd(1)-O(4)	2.321(8)
Cd(1)-O(5)#2	2.346(5)	Cd(1)-O(6)#2	2.368(5)
O(1)-Cd(1)-O(2)#1	124.7(2)	O(1)-Cd(1)-O(3)	89.4(3)
O(2)#1-Cd(1)-O(3)	89.7(3)	O(1)-Cd(1)-O(4)	87.7(3)
O(2)#1-Cd(1)-O(4)	87.6(2)	O(3)-Cd(1)-O(4)	174.0(3)
O(1)-Cd(1)-O(5)#2	94.99(19)	O(2)#1-Cd(1)-O(5)#2	140.33(19)
O(3)-Cd(1)-O(5)#2	90.2(3)	O(4)-Cd(1)-O(5)#2	95.3(2)
O(1)-Cd(1)-O(6)#2	149.7(2)	O(2)#1-Cd(1)-O(6)#2	85.46(18)
O(3)-Cd(1)-O(6)#2	94.2(3)	O(4)-Cd(1)-O(6)#2	91.0(3)
O(5)#2-Cd(1)-O(6)#2	54.99(16)		
2			
Ni(1)-O(2)	2.097(6)	Ni(1)-O(7)#1	2.040(6)
Ni(1)-O(11)	2.052(5)	Ni(1)-O(12)	2.087(6)
Ni(1)-N(3)	2.048(6)	Ni(1)-N(4)	2.079(7)
Ni(2)-O(1)	2.020(5)	Ni(2)-O(4)#2	2.022(6)
Ni(2)-O(5)#3	2.178(6)	Ni(2)-O(6)#3	2.097(5)
Ni(2)-N(1)	2.097(7)	Ni(2)-N(2)	2.068(6)
O(7)#1-Ni(1)-N(3)	84.3(2)	O(7)#1-Ni(1)-O(11)	92.4(2)
N(3)-Ni(1)-O(11)	171.1(3)	O(7)#1-Ni(1)-N(4)	97.4(2)
N(3)-Ni(1)-N(4)	79.1(3)	O(11)-Ni(1)-N(4)	93.2(2)
O(7)#1-Ni(1)-O(12)	88.3(2)	N(3)-Ni(1)-O(12)	98.9(2)
O(11)-Ni(1)-O(12)	89.2(2)	N(4)-Ni(1)-O(12)	173.8(3)
O(7)#1-Ni(1)-O(2)	169.9(2)	N(3)-Ni(1)-O(2)	87.3(2)
O(11)-Ni(1)-O(2)	96.8(2)	N(4)-Ni(1)-O(2)	86.4(3)
O(12)-Ni(1)-O(2)	87.6(2)	O(1)-Ni(2)-O(4)#2	89.3(2)

O(1)-Ni(2)-N(2)	88.8(2)	O(4)#2-Ni(2)-N(2)	97.9(3)
O(1)-Ni(2)-O(6)#3	100.4(2)	O(4)#2-Ni(2)-O(6)#3	99.0(2)
N(2)-Ni(2)-O(6)#3	160.8(3)	O(1)-Ni(2)-N(1)	166.1(3)
O(4)#2-Ni(2)-N(1)	97.4(3)	N(2)-Ni(2)-N(1)	78.3(3)
O(6)#3-Ni(2)-N(1)	90.6(2)	O(1)-Ni(2)-O(5)#3	88.9(2)
O(4)#2-Ni(2)-O(5)#3	159.9(2)	N(2)-Ni(2)-O(5)#3	102.1(2)
O(6)#3-Ni(2)-O(5)#3	61.7(2)	N(1)-Ni(2)-O(5)#3	88.9(3)
3			
Ni(1)-N(1)	2.058(4)	Ni(1)-O(5)	2.090(4)
Ni(1)-O(4)	2.136(3)	Ni(2)-N(2)	2.133(4)
Ni(2)-O(7)	2.080(4)	Ni(2)-O(8)	2.031(3)
N(1)#1-Ni(1)-N(1)	180.0	N(1) -Ni(1)-O(5)	88.97(16)
N(1)-Ni(1)-O(5)#1	91.03(16)	O(5)#1-Ni(1)-O(5)	180.00(12)
N(1)-Ni(1)-O(4)	89.74(16)	N(1)-Ni(1)-O(4)#1	90.26(16)
O(5) -Ni(1)-O(4)	62.49(14)	O(5)-Ni(1)-O(4)#1	117.51(14)
N(1)#1-Ni(1)-O(4)	90.26(16)	O(4)#1-Ni(1)-O(4)	180.0 (2)
O(8)-Ni(2)-O(8)#2	180.0(4)	O(8)-Ni(2)-O(7)#2	86.93(14)
O(8)-Ni(2)-O(7)	93.07(14)	O(7)#2-Ni(2)-O(7)	180.0
O(8)-Ni(2)-N(2)	90.03(15)	O(8)#2-Ni(2)-N(2)	89.97(15)
O(7)#2-Ni(2)-N(2)	89.36(16)	O(7)-Ni(2)-N(2)	90.64(16)
N(2)-Ni(2)-N(2)#2	180.04		
4			
Co(1)-O(1)	2.1444(19)	Co(1)-O(2)	2.0548(19)
Co(1)-N(1)	2.214(2)		
O(2)#1-Co(1)-O(2)	180.00(10)	O(2)#1-Co(1)-O(1)#1	89.94(8)
O(2)-Co(1)-O(1)#1	90.06(8)	O(2)-Co(1)-O(1)	89.94(8)
O(1)#1-Co(1)-O(1)	180.0	O(2)#1-Co(1)-N(1)	86.46(8)
O(2)-Co(1)-N(1)	93.54(8)	O(1)#1-Co(1)-N(1)	93.52(8)
O(1)-Co(1)-N(1)	86.48(8)	N(1)-Co(1)-N(1)#1	180.0

Symmetry transformations used to generate equivalent atoms: **1** #1 -x, -y+1, -z+1; #2 -x-1/2, y+3/2, -z+1; **2** #1 x-1, y+1, z-1; #2 x-1, y, z; #3 -x+1, -y+2, -z+2; **3** #1 -x+3, -y+1, -z+1; #2 -x+1, y, -z; **4** #1 -x+3/2, -y+1/2, -z+1.

Table S2 The hydrogen bond parameters of compounds 1-4.

ruore 52 The hydrogen bond parameters of compounds 1.					
D-H	d(D-H)	$d(H \cdots A)$	<dha< td=""><td>$d(D \cdots A)$</td><td></td></dha<>	$d(D \cdots A)$	

1				
$O3-H\cdots O2^i$	0.850	2.393	132.35	3.032
O3-H···O6 ⁱⁱ	0.850	1.843	163.78	2.670
O4-H···O7 ⁱⁱⁱ	0.850	2.326	115.63	2.801
$O4-H\cdots O8^{iv}$	0.850	2.352	131.79	2.987
O8-H…O3 ^v	0.850	1.896	149.61	2.665
O8-H…O4	0.850	2.484	165.70	3.314
2				
$O9-H\cdots O4^i$	0.850	1.848	173.62	2.694
O9-H···O7 ⁱⁱ	0.850	2.205	136.27	2.880
O10-H…O15 ⁱⁱⁱ	0.850	2.059	145.06	2.798
O10-H…O6 ⁱⁱ	0.850	2.014	152.25	2.794
O11 - H…O16 ^{iv}	0.850	1.940	175.55	2.789
O11-H···Br4 ^v	0.850	2.498	158.44	3.303
3				
$O1$ -H \cdots O7 ⁱ	0.820	1.982	150.54	2.726
O7-H···O13 ⁱⁱ	0.850	1.982	141.28	2.698
O7 - H⋯O9	0.850	2.024	130.65	2.657
O11-H…O4 ⁱⁱⁱ	0.820	1.866	161.52	2.656
01 3- Н…О9 ^{iv}	0.850	2.035	173.23	2.881
O13-H…O10 ^v	0.850	2.130	173.38	2.976
4				
O1-H···O5 ⁱ	0.850	2.140	151.93	2.917
O1-H···O3	0.850	2.019	142.78	2.745
O4-H···O3 ⁱⁱ	0.820	1.802	151.10	2.551

Symmetry codes: 1: i x - 1, y, z; ii x - 1/2, y - 1/2, z; iii -x + 1/2, -y + 3/2, -z + 1; iv -x, y, -z+1/2; v -x, -y + 1, -z + 1; 2: i -x + 1, -y + 1, -z; ii x + 1, y, z; iii x + 1, y - 1, z + 1; iv -x, -y + 2, -z; v -x + 1, -y + 2, -z; 3: i -x + 2, -y, -z + 1; ii x, y - 1, z - 1; iii x - 1, y, z - 1; iv -x, -y + 1, -z + 1; v x, y, z + 1; 4: i x, y - 1, z; ii -x + 3/2, y + 1/2, -z + 3/2.

Figure S1 The proton conductivities of compounds 1(a), 2(b), 3(c) and 4(d) at different temperature.