Supporting information

A new dipeptide as selective gelator of Cu(II), Zn(II) and Pb(II)

Santosh Kumar,^a Sujay Kumar Nandi,^a Saurav Suman^a and Debasish Haldar*^a

Department of Chemical Sciences

Indian Institute of Science Education and Research Kolkata Mohanpur 741246, West Bengal, India E-mail: <u>deba h76@iiserkol.ac.in</u>, <u>deba h76@yahoo.com</u>.

Table of contents

1. Supporting information Figure S1	3
2. Supporting information Figure S2	3
3. Supporting information Figure S3	4
4. Supporting information Figure S4	4
5. Supporting information Figure S5	5
6. Supporting information Figure S6	5
7. Supporting information Figure S7	6
8. Supporting information Figure S8	6
9. Supporting information Figure S9	7
10. Supporting information Figure S10	7
11. Supporting information Figure S11	8
12. Supporting information Figure S12	8
13. Supporting information Figure S13	9
142. Supporting information Figure S14	9
15. Supporting information Figure S15	10
16. Supporting information Figure S16	10
17. Supporting information Figure S17	11
18. Supporting information Figure S18	11

Fig. S1. Absorption spectra of (a) peptide 2 and (b) peptide 3 with increasing concentrations.

Fig. S2. Plots of the key absorbance intensities as a function of concentration of (a) peptide **2** at 259nm, (b) peptide **3** at 290nm and (c) peptide **4** at 282nm. The linear fitting show that the Beer-Lambert behavior have observed.

Fig. S3: ¹H NMR (400 MHz, CDCl₃, δ in ppm, 298K) spectra of BOC-Gly-Aib-OMe 1.

Fig. S4: ¹³C NMR (100 MHz, CDCl₃, δ in ppm, 298K) spectra of BOC-Gly-Aib-OMe 1.

Fig. S6: Mass Spectra of Boc-Gly-Aib-OMe 1.

Fig. S7: ¹H NMR (500 MHz, CDCl₃, δ in ppm, 298K) spectra Boc-Phe-Aib-OMe 2.

Fig. S8: 13 C NMR (125 MHz, CDCl₃, δ in ppm, 298K) spectra Boc-Phe-Aib-OMe 2.

Fig. S10: FT-IR spectrum of Boc-Phe-Aib-OMe 2.

Fig. S11: ¹H NMR (400 MHz, CDCl₃, δ ppm) spectra of NPG-Phe-OMe 3.

Fig. S12:¹³C NMR (100 MHz, CDCl₃, δ in ppm, 298K) spectra of NPG-Phe-OMe 3.

Fig. S13: IR spectra of NPG-Phe-OMe 3.

Fig. S14: Mass Spectra of NPG-Phe-OMe 3.

Fig. S16: ¹³C NMR (100 MHz, CDCl₃, δ in ppm, 298K) spectra NPG-Tyr-OMe **4**.

Fig. S17: IR spectra of NPG-Tyr-OMe 4.

Fig. S18: Mass Spectra of NPG-Tyr-OMe 4.