Supporting Information

Tetrameric Cluster Assembled One-Dimensional Hybrid Lead Halides with Broadband light Emission

Wei-Feng Zhang,^{a,b} Jian-Qiang Zhao,^a Xing-Yu Sun,^{a,b} Yue-Yu Ma,^{a,b} Hong-Mei Pan,^{a,b} Zhi-Hong Jing,^{*b} Xiao-Wu Lei^{*a} and Qing-Xia Yao^c

^a Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155,

P. R. China. Email: xwlei_jnu@163.com

^b College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong,
273165, P. R. China. Email: zhhjing@126.com

^c School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 25000, P. R. China.

*Corresponding author: Zhi-Hong Jing, Xiao-Wu Lei

E-mail address: zhhjing@126.com, xwlei_jnu@163.com,

Fig. S1 Coordination environments of Pb^{2+} ions in compounds 1 (a) and 2 (b).

Fig. S2 Coordination environments of Pb^{2+} ions in compounds 3 (a) and 4 (b).

Fig. S3 The photo images of bulk crystal for compounds **1** (a), **2** (b), **3** (c) and **4** (d) under ambient light.

Fig. S4 The simulated and experimental XRD patterns of compound 2.

Fig. S5 The photoluminescence excitation spectrum of compound 2.

Fig. S6 Comparison of the photoluminescence emission spectra of bulk crystals and microscale crystals of compound 2.

	1	2	3	4
chemical formula	$C_4N_2H_{16}OPb_2Br_6$	$C_9N_2H_{23}OPb_2Br_6$	$C_{14}N_4H_{40}Pb_3Br_{10}$	$C_{14}N_4H_{40}Pb_3Cl_{10}$
fw	1002.03	1069.13	1685.17	1240.60
Space group	$P2_{1}/n$	$P2_{1}$	C2/c	C2/c
$a/ m \AA$	7.7317(13)	8.194(15)	14.597(4)	24.6238(17)
<i>b</i> /Å	11.617(2)	19.75(4)	12.063(3)	11.6554(8)
c/Å	20.846(4)	14.33(3)	21.211(7)	14.3516(10)
<i>β/</i> °	92.684(2)	92.072(17)	91.264(3)	124.349(3)
$V(\text{\AA}^3)$	1870.3(6)	2317(7)	3734.1(18)	3400.6(4)
Z	4	4	4	4
$D_{\text{calcd}}(\text{g}\cdot\text{cm}^{-3})$	3.559	3.064	2.998	2.423
Temp (K)	296(2)	296(2)	296(2)	296(2)
$\mu \; ({\rm mm}^{-1})$	30.782	24.855	24.206	15.614
<i>F</i> (000)	1744	1892	2992	2271
Reflections collected	22024	24734	21759	19969
Unique reflections	4422	8915	4613	3925
Reflections $(I > 2\sigma(I))$	3419	5686	3278	3321
GOF on F^2	1.016	0.952	1.041	1.060
$R_1, wR_2 (I > 2\sigma(I))^a$	0.0413/0.0929	0.0361/0.0535	0.0518/0.1211	0.0242/0.0551
R_1, wR_2 (all data)	0.0627/0.1015	0.0778/0.0621	0.0822/0.1349	0.0317/0.0575
$\Delta \rho_{\rm max} ~({\rm e}/{\rm \AA}^3)$	3.636	0.908	3.408	0.648
$\Delta \rho_{\min} (e/Å^3)$	-2.612	-0.799	-3.219	-1.591

 Table S1 Crystal Data and Structural Refinements of compounds 1 - 4.

 Table S2 Bond lengths [Å] and angles [°] for compound 1.

υ	0 1	1	
Pb(1)-Br(5)	2.7952(13)	Pb(2)-Br(6)	2.8259(12)
Pb(1)-Br(4)	2.9266(12)	Pb(2)-Br(1)	2.9152(11)
Pb(1)-Br(1)	3.0330(12)	Pb(2)-Br(4)#1	3.0473(13)
Pb(1)-Br(3)	3.0704(12)	Pb(2)-Br(3)#2	3.0478(12)
Pb(1)-Br(2)	3.1437(11)	Pb(2)-Br(2)#3	3.1271(11)
Br(5)-Pb(1)-Br(4)	93.89(4)	Br(6)-Pb(2)-Br(1)	91.52(3)
Br(5)-Pb(1)-Br(1)	94.87(4)	Br(6)-Pb(2)-Br(4)#1	87.81(4)
Br(4)-Pb(1)-Br(1)	90.25(3)	Br(1)-Pb(2)-Br(4)#1	93.35(3)
Br(5)-Pb(1)-Br(3)	94.40(4)	Br(6)-Pb(2)-Br(3)#2	90.38(3)
Br(4)-Pb(1)-Br(3)	92.49(4)	Br(1)-Pb(2)-Br(3)#2	91.75(3)
Br(1)-Pb(1)-Br(3)	170.13(3)	Br(4)#1-Pb(2)-Br(3)#2	174.63(3)
Br(5)-Pb(1)-Br(2)	94.11(3)	Br(6)-Pb(2)-Br(2)#3	90.14(3)
Br(4)-Pb(1)-Br(2)	171.48(3)	Br(1)-Pb(2)-Br(2)#3	177.56(3)
Br(1)-Pb(1)-Br(2)	86.14(3)	Br(4)#1-Pb(2)-Br(2)#3	88.50(3)
Br(3)-Pb(1)-Br(2)	89.83(3)	Br(3)#2-Pb(2)-Br(2)#3	86.45(3)

Symmetry transformations used to generate equivalent atoms: #1 *x*+1, *y*, *z*; #2 -*x*+1, -*y*+1, -*z*; #3 -*x*+2, -*y*+1, -*z*.

 Table S3 Bond lengths [Å] and angles [°] for compound 2.

Pb(1)-Br(3)	2.894(6)	Pb(3)-Br(10)	2.891(7)
Pb(1)-Br(9)	2.923(7)	Pb(3)-Br(12)	2.902(6)
Pb(1)-Br(1)	3.043(6)	Pb(3)-Br(2)	3.016(6)
Pb(1)-Br(12)	3.058(5)	Pb(3)-Br(3)#1	3.066(6)
Pb(1)-Br(8)#1	3.196(6)	Pb(3)-Br(5)#1	3.200(6)
Pb(2)-Br(4)	2.803(7)	Pb(3)-Br(8)#1	3.210(6)
Pb(2)-Br(6)	2.899(6)	Pb(4)-Br(7)	2.784(7)
Pb(2)-Br(1)	2.965(6)	Pb(4)-Br(11)	2.916(6)
Pb(2)-Br(11)#2	3.047(6)	Pb(4)-Br(2)	2.998(6)
Pb(2)-Br(8)	3.178(6)	Pb(4)-Br(6)	3.068(6)
Br(3)-Pb(1)-Br(9)	91.72(16)	Pb(4)-Br(5)	3.162(6)
Br(3)-Pb(1)-Br(1)	101.86(18)	Br(10)-Pb(3)-Br(12)	91.16(16)
Br(9)-Pb(1)-Br(1)	84.33(19)	Br(10)-Pb(3)-Br(2)	83.56(19)
Br(3)-Pb(1)-Br(12)	91.64(19)	Br(12)-Pb(3)-Br(2)	99.47(18)
Br(9)-Pb(1)-Br(12)	97.62(17)	Br(10)-Pb(3)-Br(3)#1	96.37(18)
Br(1)-Pb(1)-Br(12)	166.31(14)	Br(12)-Pb(3)-Br(3)#1	92.58(19)
Br(3)-Pb(1)-Br(8)#1	173.87(13)	Br(2)-Pb(3)-Br(3)#1	167.95(13)
Br(9)-Pb(1)-Br(8)#1	87.16(15)	Br(10)-Pb(3)-Br(5)#1	87.99(15)
Br(1)-Pb(1)-Br(8)#1	84.04(17)	Br(12)-Pb(3)-Br(5)#1	175.49(14)
Br(12)-Pb(1)-Br(8)#1	82.54(17)	Br(2)-Pb(3)-Br(5)#1	84.84(17)
Br(4)-Pb(2)-Br(6)	91.07(18)	Br(3)#1-Pb(3)-Br(5)#1	83.11(17)
Br(4)-Pb(2)-Br(1)	86.02(19)	Br(10)-Pb(3)-Br(8)#1	161.02(15)
Br(6)-Pb(2)-Br(1)	93.03(19)	Br(12)-Pb(3)-Br(8)#1	84.77(16)
Br(4)-Pb(2)-Br(11)#2	86.11(18)	Br(2)-Pb(3)-Br(8)#1	78.86(18)
Br(6)-Pb(2)-Br(11)#2	86.5(2)	Br(3)#1-Pb(3)-Br(8)#1	102.32(18)
Br(1)-Pb(2)-Br(11)#2	172.11(15)	Br(5)#1-Pb(3)-Br(8)#1	97.43(15)
Br(4)-Pb(2)-Br(8)	98.03(16)	Br(7)-Pb(4)-Br(11)	90.11(17)
Br(6)-Pb(2)-Br(8)	169.21(14)	Br(7)-Pb(4)-Br(2)	86.03(18)
Br(1)-Pb(2)-Br(8)	93.37(19)	Br(11)-Pb(4)-Br(2)	93.92(19)
Br(11)#2-Pb(2)-Br(8)	88.36(19)	Br(7)-Pb(4)-Br(6)	85.24(17)
Br(11)-Pb(4)-Br(5)	169.98(15)	Br(11)-Pb(4)-Br(6)	88.4(2)
Br(2)-Pb(4)-Br(5)	92.58(18)	Br(2)-Pb(4)-Br(6)	170.97(14)
Br(6)-Pb(4)-Br(5)	86.33(18)	Br(7)-Pb(4)-Br(5)	97.94(16)

Symmetry transformations used to generate equivalent atoms: #1 *x*-1,*y*,*z*; #2 *x*+1,*y*,*z*.

 Table S4 Bond lengths [Å] and angles [°] for compound 3.

υĽ			
Pb(1)-Br(1)#1	3.0060(12)	Pb(2)-Br(3)	2.8570(13)
Pb(1)-Br(1)	3.0060(12)	Pb(2)-Br(4)	2.9388(13)
Pb(1)-Br(5)#1	3.0139(12)	Pb(2)-Br(2)	2.9518(13)
Pb(1)-Br(5)	3.0139(12)	Pb(2)-Br(1)#2	3.1825(13)
Pb(1)-Br(4)	3.0350(15)	Pb(2)-Br(1)	3.1878(15)
Pb(1)-Br(4)#1	3.0350(15)	Pb(2)-Br(5)#2	3.2189(13)
Br(1)#1-Pb(1)-Br(1)	90.12(5)	Br(3)-Pb(2)-Br(4)	91.58(4)
Br(1)#1-Pb(1)-Br(5)#1	87.39(4)	Br(3)-Pb(2)-Br(2)	90.94(4)
Br(1)-Pb(1)-Br(5)#1	177.30(3)	Br(4)-Pb(2)-Br(2)	93.95(5)
Br(1)#1-Pb(1)-Br(5)	177.30(3)	Br(3)-Pb(2)-Br(1)#2	83.97(4)
Br(1)-Pb(1)-Br(5)	87.39(4)	Br(4)-Pb(2)-Br(1)#2	93.30(4)
Br(5)#1-Pb(1)-Br(5)	95.12(5)	Br(2)-Pb(2)-Br(1)#2	171.25(3)
Br(1)#1-Pb(1)-Br(4)	90.76(4)	Br(3)-Pb(2)-Br(1)	161.94(3)
Br(1)-Pb(1)-Br(4)	83.79(3)	Br(4)-Pb(2)-Br(1)	82.26(3)
Br(5)#1-Pb(1)-Br(4)	97.28(3)	Br(2)-Pb(2)-Br(1)	106.36(4)
Br(5)-Pb(1)-Br(4)	87.93(4)	Br(1)#2-Pb(2)-Br(1)	79.48(3)
Br(1)#1-Pb(1)-Br(4)#1	83.79(3)	Br(3)-Pb(2)-Br(5)#2	101.40(4)
Br(1)-Pb(1)-Br(4)#1	90.76(4)	Br(4)-Pb(2)-Br(5)#2	165.13(3)
Br(5)#1-Pb(1)-Br(4)#1	87.93(4)	Br(2)-Pb(2)-Br(5)#2	93.06(4)
Br(5)-Pb(1)-Br(4)#1	97.28(3)	Br(1)#2-Pb(2)-Br(5)#2	81.03(3)
Br(4)-Pb(1)-Br(4)#1	172.30(6)	Br(1)-Pb(2)-Br(5)#2	83.19(3)

Symmetry transformations used to generate equivalent atoms: #1 -*x*+1/2,*y*,-*z*+1; #2 -*x*,-*y*+1,-*z*+1.

 Table S5 Bond lengths [Å] and angles [°] for compound 4.

0 1	1 0 1 1		
Pb(1)-Cl(2)	2.8778(11)	Pb(2)-Cl(1)	2.7108(11)
Pb(1)-Cl(2)#1	2.8778(11)	Pb(2)-Cl(5)	2.8028(14)
Pb(1)-Cl(5)#2	2.8930(14)	Pb(2)-Cl(4)	2.8165(12)
Pb(1)-Cl(5)#3	2.8930(14)	Pb(2)-Cl(2)#3	3.0574(12)
Pb(1)-Cl(3)	2.8935(11)	Pb(2)-Cl(2)	3.0666(12)
Pb(1)-Cl(3)#1	2.8935(11)	Pb(2)-Cl(3)	3.1082(13)
Cl(2)-Pb(1)-Cl(2)#1	94.07(5)	Cl(1)-Pb(2)-Cl(5)	90.96(4)
Cl(2)-Pb(1)-Cl(5)#2	89.57(5)	Cl(1)-Pb(2)-Cl(4)	91.13(4)
Cl(2)#1-Pb(1)-Cl(5)#2	81.50(4)	Cl(5)-Pb(2)-Cl(4)	91.64(5)
Cl(2)-Pb(1)-Cl(5)#3	81.50(4)	Cl(1)-Pb(2)-Cl(2)#3	157.98(3)
Cl(2)#1-Pb(1)-Cl(5)#3	89.57(5)	Cl(5)-Pb(2)-Cl(2)#3	79.88(4)
Cl(5)#2-Pb(1)-Cl(5)#3	166.91(7)	Cl(4)-Pb(2)-Cl(2)#3	108.98(4)
Cl(2)-Pb(1)-Cl(3)	85.06(4)	Cl(1)-Pb(2)-Cl(2)	82.41(3)
Cl(2)#1-Pb(1)-Cl(3)	179.13(3)	Cl(5)-Pb(2)-Cl(2)	95.35(5)
Cl(5)#2-Pb(1)-Cl(3)	98.51(4)	Cl(4)-Pb(2)-Cl(2)	170.54(3)
Cl(5)#3-Pb(1)-Cl(3)	90.27(5)	Cl(2)#3-Pb(2)-Cl(2)	78.61(3)
Cl(2)-Pb(1)-Cl(3)#1	179.13(3)	Cl(1)-Pb(2)-Cl(3)	99.93(3)
Cl(2)#1-Pb(1)-Cl(3)#1	85.06(4)	Cl(5)-Pb(2)-Cl(3)	166.50(4)
Cl(5)#2-Pb(1)-Cl(3)#1	90.28(5)	Cl(4)-Pb(2)-Cl(3)	96.07(4)
Cl(5)#3-Pb(1)-Cl(3)#1	98.51(4)	Cl(2)#3-Pb(2)-Cl(3)	87.13(3)
Cl(3)-Pb(1)-Cl(3)#1	95.81(5)	Cl(2)-Pb(2)-Cl(3)	78.36(3)

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z; #2 x+1,y,z; #3 -x+2, -y+1, -z