Two Sulfur and Nitrogen-rich Cobalt-Thiacalix[4]arene Compounds for

Selective Mercury Removal from Aqueous Solution

KaiyueLi, ${ }^{\text {a, }}{ }^{\text {b }}$ Wuping Liao*a, b, c
${ }^{\text {a }}$ State Key Laboratory of Rare Earth Resource Utilization, ERC for the Separation and Purification of REs and Thorium, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
${ }^{\text {b }}$ University of Science and Technology of China, Hefei, 230026, China.
${ }^{\text {}}$ Institute of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, China.

I. Experimental Section

Materials and General Methods.

p-tert-Butylthiacalix[4]arene $\left(\mathrm{H}_{4} \mathrm{TC} 4 \mathrm{~A}\right)$ was synthesized by literature method[1]and other reagents were purchased from commercial sources without further purification. Single crystal diffraction measurements were performed using a Bruker D8 QUEST system with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). FT-IR spectra using KBr pellets were taken on a Bruker Vertex 70Spectrometer. TGA was performed on a NETZSCH STA449F3. Elemental analysis for C, H, N was recorded on a VarioEL instrument. Magnetic susceptibility measurement was performed on a Quantum Design MPMS XL-5 SQUID system in the temperature range of 2-300 K and diamagnetic corrections for the sample and sample holder were applied. N_{2} adsorption and H_{2} adsorption measurement were performed on a Micromeritics ASAP 2020 machine. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a VG Thermo ESCALAB 250 spectrometer (VG Scientific) operated at 120 W . The composition of the products was obtained by using an inductively coupled plamaoptical emission spectrometer (ICP-OES, PerkinElmer Optimal 8000). The pH value of the aqueous phase is measured by PHS-3C acidometer.

Synthesis of compounds CIAC-131 and CIAC-251.

Synthesis of compound $\left\{\left[\mathrm{Co}_{4}(\mathrm{TC4A})\left(\mathrm{SO}_{4}\right)\right]_{6}(\mathrm{~L})_{6}(\mathrm{HCOO})_{6}{ }^{312-}(\mathrm{CIAC}-131)\right.$. Pink bulk crystals were obtained from solvothermal reaction of the mixture of p-tertbutylthiacalix[4]arene $\left(\mathrm{H}_{4} \mathrm{TC} 4 \mathrm{~A}, 0.037 \mathrm{~g}, 0.05 \mathrm{mmol}\right), \mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{~g}$, 0.18 mmol), $1 H-1,2,3$-triazole-4,5-dicarboxylic acid ($\mathrm{L}, 0.025 \mathrm{~g}, 0.16 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{OH}$ (5.5 ml),DMF (0.5 ml), triethylamine (several drops) in a 20 ml Teflon-lined autoclave which was kept at $130^{\circ} \mathrm{C}$ for 3 days and then slowly cooled to $20^{\circ} \mathrm{C}$ at 4 ${ }^{\circ} \mathrm{C} \cdot \mathrm{h}^{-1}$. The pink bulk crystals were isolated by filtration, which were washed by $\mathrm{CH}_{3} \mathrm{OH}$ and then dried in air. Yield: ca. 80% based on $\mathrm{H}_{4} \mathrm{TC} 4 \mathrm{~A}$. Elemental analysis (\%) for $\mathrm{C}_{342} \mathrm{H}_{450} \mathrm{Co}_{24} \mathrm{~N}_{30} \mathrm{O}_{84} \mathrm{~S}_{30}$ (including $12\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}$counter cations, excluding the disordered solvents): calculated C 47.21, H 5.21, N 4.83; found (after drying in vacuum) C 47.93, H 5.30, N 4.95.

Synthesis of compound $\left\{\left[\mathrm{Co}_{4}(\mathbf{T C 4 A})_{2}\right]_{2} L\right\}^{3-}$ (CIAC-251). Green bulk crystals were synthesized by a similar procedure as CIAC-131 except $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was replaced with $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{~g}, 0.21 \mathrm{mmol})$. The green bulk crystals were isolated by filtration, which were washed by $\mathrm{CH}_{3} \mathrm{OH}$ and then dried in air. Yield: ca. 50% based on H_{4} TC4A. Elemental analysis (\%) for $\mathrm{C}_{182} \mathrm{H}_{221} \mathrm{Co}_{8} \mathrm{~N}_{6} \mathrm{O}_{20} \mathrm{~S}_{16}$ (including $3\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}$counter cations, excluding the disordered solvents): calculated C 57.57, H 5.87, N 2.21 ; found (after drying in vacuum) C 57.65, H 5.96, N 2.33 .

Adsorption experiments of $\mathbf{H g}$ (II)

$q_{\mathrm{e}}=\frac{\left(C_{i}-C_{e}\right)}{m} V$
$q_{t}=\frac{\left(C_{i}-C_{\mathrm{t}}\right)}{m} V$
$R=\frac{\left(C_{i}-C_{e}\right)}{C_{i}} \times 100 \%$
Where $C_{e}(\mathrm{mg} / \mathrm{L}), C_{t}(\mathrm{mg} / \mathrm{L})$ and $C_{\mathrm{i}}(\mathrm{mg} / \mathrm{L})$ represent the metal concentrations at equilibrium, t time and the beginning (or before mixing), respectively. And $q_{e}(\mathrm{mg} / \mathrm{g})$ and $q_{t}(\mathrm{mg} / \mathrm{g})$ represent the amount of adsorbed metal ions at equilibrium and t time, respectively. R is removal rate/efficiency of metal ions. $V(\mathrm{~L})$ is the volume of test solutions and $m(\mathrm{mg})$ is the amount of adsorbent.

Langmuir isotherm models

The Langmuir adsorption model was further employed to study the equilibrium adsorption isotherm, the adsorption capacity of CIAC-131 and CIAC-251 were calculated by the equation:

$$
\frac{C_{\mathrm{e}}}{q_{e}}=\frac{1}{q_{m} k_{L}}+\frac{C_{e}}{q_{m}}(4)
$$

Where $C_{e}(\mathrm{mg} / \mathrm{L})$ and $q_{e}(\mathrm{mg} / \mathrm{g})$ represent the concentration and adsorption amount of $\mathrm{Hg}(\mathrm{II})$ at equilibrium, respectively. $q_{m}(\mathrm{mg} / \mathrm{g})$ is the adsorption capacity $(\mathrm{mg} / \mathrm{g})$, while
k_{L} is the Langmuir constant $(\mathrm{L} / \mathrm{mg})$.
Pseudo-Second-Order Kinetic models

$$
\frac{t}{q_{t}}=\frac{t}{q_{e}}+\frac{1}{k_{2} q_{e}{ }^{2}}(5)
$$

Where $q_{t}(\mathrm{mg} / \mathrm{g})$ and $q_{e}(\mathrm{mg} / \mathrm{g})$ represent the adsorption amounts at t time and equilibrium, respectively, while $k_{2}\left(\mathrm{~g} \mathrm{mg}^{-1} \mathrm{~min}^{-1}\right)$ is the rate constant.

Pretreatment sample. Obtained sample from mother liquor was dry at $70{ }^{\circ} \mathrm{C}$ for 5 min .

Effect of $\mathbf{p H}$. The effect of pH values from 1 to 6.5 (the pH value of water measured by PHS-3C acidometer) for the removal of mercury ions was studied. The samples of CIAC-131 (5 mg) or CIAC-251 (5 mg) were respectively put into the aqueous solution of Hg (II) with an initial concentration of $100 \mathrm{mg} / \mathrm{L}(5 \mathrm{~mL})$ and stirred at 400 rpm at room temperature for 4 h . And then the solid samples were separated via the centrifuge and the residual concentration of $\mathrm{Hg}(\mathrm{II})$ was determined by ICP-OES.

Selective Adsorption. The samples of CIAC-131 (5 mg) or CIAC-251 (5 mg) were dispersed in a $\mathrm{pH}=6$ aqueous solution containing $\mathrm{Hg}(\mathrm{II})(50 \mathrm{mg} / \mathrm{L})$ and other coexisting metal ions $\mathrm{Mg}(\mathrm{II}), \mathrm{Ca}(\mathrm{II}), \mathrm{Mn}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and Pb (II) $(50 \mathrm{mg} / \mathrm{L})$, stirred at 400 rpm at room temperature for 4 h . And then the solid samples were separated via the centrifuge and the residual concentrations of the metal ions were determined by ICP-OES.

Adsorption isotherms. The samples of CIAC-131 (5 mg) and CIAC-251 (5 mg) were immersed into HgCl_{2} aqueous solution $(\mathrm{pH}=6)$ with the concentration range of $50-950 \mathrm{mg} / \mathrm{L}(5 \mathrm{~mL})$ and stirred at 400 rpm at room temperature for 4 h . After saturated adsorption, the solid samples of CIAC-131-Hg or CIAC-251-Hg were separated via the centrifuge and the residual concentration of $\mathrm{Hg}(\mathrm{II})$ was determined by ICP-OES.

Adsorption kinetics measurements. The samples of CIAC-131 (5 mg) were immersed into HgCl_{2} aqueous solution ($\mathrm{pH}=6$) with an initial concentration of 50 $\mathrm{mg} / \mathrm{L}(5 \mathrm{~mL})$, stirred at 400 rpm at room temperature at a certain time interval, and
then separated via the centrifuge. The residual concentration of $\mathrm{Hg}(\mathrm{II})$ was determined by ICP-OES.

Control experiment. The mass of $\mathrm{H}_{4} \mathrm{TC} 4 \mathrm{~A}$ and \mathbf{L} were equivalent to the amount of H_{4} TC4A and \mathbf{L} in 5 mg samples of CIAC-131. The same adsorption experiment was performed. That is, the samples of $\mathrm{H}_{4} \mathrm{TC} 4 \mathrm{~A}$ and \mathbf{L} were immersed into the aqueous solution with $550 \mathrm{mg} / \mathrm{L} \mathrm{HgCl}_{2}(5 \mathrm{~mL})$ and stirred at 400 rpm at room temperature for 4 h . After adsorption, the solid samples were separated via the centrifuge and the residual concentration of $\mathrm{Hg}(\mathrm{II})$ was determined by ICP-OES.

II. Crystallographic Analysis

The single crystal diffraction data of CIAC-131 and CIAC-251 were collected on a Bruker D8 QUEST system with a $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). The direct method was chosen to solve the crystal structures, and the refinement was performed with full-matrix least-squares on F^{2} using the reported SHELXL-2017 program[2]. The "SQUEEZE" method from the PLATON package was applied to subtract the electronic density of the solvent molecules from the crystal structure. The hydrogen atoms were generated theoretically and refined isotropically with fixed thermal factors. All non-hydrogen atoms except the disordered butyl groups were refined anisotropically. The molecular formula shown in this paper did not include the unidentified counter ions and solvent molecules. After the final refinement, the R factors were still relatively large, which should be due to the weak diffraction even at 190 K. The crystal data and refinement details are given in Table S1. The number CCDC2024025-2024026 have been assigned for CIAC-131 and CIAC-251. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.

Table S1.Crystal data and structure refinement for compounds CIAC-131 and CIAC-251.

	CIAC-131	CIAC-251
Formula	$\mathrm{C}_{270} \mathrm{H}_{270} \mathrm{Co}_{24} \mathrm{~N}_{18} \mathrm{O}_{84} \mathrm{~S}_{30}$	$\mathrm{C}_{164} \mathrm{H}_{176} \mathrm{Co}_{8} \mathrm{~N}_{3} \mathrm{O}_{20} \mathrm{~S}_{16}$
Formula wt.	7487.14	3493.47
$\mathrm{~T} / \mathrm{K}$	$190(2)$	$200(2) \mathrm{K}$
Cryst. syst.	Trigonal	Trigonal
Space group	$\mathrm{R}-3$	$\mathrm{R}-3 \mathrm{c}$
$\mathrm{a}(\AA)$	$36.5063(13)$	$49.4477(9)$
$\mathrm{b}(\AA)$	$36.5063(13)$	$49.4477(9)$
$\mathrm{c}(\AA)$	$28.7488(11)$	$39.5019(10)$
$\alpha\left(^{\circ}\right)$	90	90
$\beta\left(^{\circ}\right)$	90	90
$\gamma\left({ }^{\circ}\right)$	120	120
$\mathrm{~V}\left(\AA^{3}\right)$	$33181(3)$	$83645(4)$
Z	3	18
$\mathrm{D}_{\mathrm{c}} / \mathrm{g}$ cm ${ }^{-3}$	1.124	1.248
μ / mm^{-1}	8.642	7.579
$\mathrm{~F}(000)$	11448	32634
Tot. data	31629	117644
Uniq. Data	3491	6451
$\mathrm{R}_{\text {int }}$	0.1522	0.1337
GOF	1.292	1.086
$\mathrm{R}_{1}^{\mathrm{a}}[I>2 \sigma(I)]$	0.3424	0.1884
$\mathrm{wR}_{2}{ }^{\mathrm{b}}(\mathrm{all}$ data $)$		

$$
{ }^{\mathrm{a}} \mathrm{R}_{1}=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| \Sigma|\mathrm{Fo}| ; \mathrm{w}_{2}=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)_{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2} .
$$

VOIDOO Calculations[3].

In order to determine the size of the inner cavity of $\left\{\mathbf{C o}_{\mathbf{2}}\right\}$, VOIDOO calculations based on the crystal structure were performed. When the virtual probe with a radius of $1.4 \AA$ (set by default, water-sized) was employed, there was no effective cavity in the structure. When the probe size was reduced to $1.0 \AA$, the volume of the cavity is about $165 \AA^{3}$ (Fig. S1a). If the internal sulfateswere excluded, the volume of the cavity increases to $473 \AA^{3}$ (Fig. S1b).

The following parameters were changed from their default settings:
Maximum number of volume-refinement cycles: 30
Minimum size of secondary grid: 3
Grid for plot files: 0.1
Primary grid spacing: 0.1
Plot grid spacing: 0.1

(a)
(b)

Fig. S1.VOIDOO-calculated void space as shown within the crystal structure of CIAC-131. (a) including $\mathrm{SO}_{4}{ }^{2-}$; (b) excluding $\mathrm{SO}_{4}{ }^{2-}$.

Fig. S2.The connection of Lligand and formate anion with SBUs in CIAC-131.

Fig. S3.The coordination of the Co sites in shuttlecock-like Co_{4}-TC4A SBU in CIAC-131.

Fig.S4. Packing diagram viewed along the c axis of compound CIAC-131.

Fig. S5. The dihedral angle between the plates through two Co_{4} cores of CIAC-251.

Fig.S6. Packing diagram viewed along the c axis of compound CIAC-251.

III. Bond valence sum calculations

Table S2-1. BVS for the Co1 atom in CIAC-131.

		Dist	R	B	BVal
Co1	O1	2.136	1.692	0.37	0.301
Co1	O2	2.076	1.692	0.37	0.354
Co1	O5	2.063	1.692	0.37	0.367
Co1	O12	2.106	1.692	0.37	0.327
Co1	S1	2.428	2.06	0.37	0.370
Co1	N3	2.042	1.84	0.37	0.579
					Sum2.298

Table S2-2. BVS for the Co2 atom in CIAC-131.

		Dist	R	B	BVal
Co 2	O2	2.124	1.692	0.37	0.311
Co 2	O3	2.111	1.692	0.37	0.322
Co 2	O6	2.072	1.692	0.37	0.358
Co 2	O9	2.062	1.692	0.37	0.368
Co 2	O11	2.090	1.692	0.37	0.341
$\mathrm{Co2}$	S 2	2.420	2.06	0.37	0.378
					Sum2.078

Table S2-3. BVS for the Co3 atom in CIAC-131.

		Dist	R	B	BVal
Co3	O3	2.046	1.692	0.37	0.384
Co3	O4	2.011	1.692	0.37	0.422
Co3	O7	2.023	1.692	0.37	0.409
Co3	O10	2.171	1.692	0.37	0.274
Co3	S3	2.461	2.06	0.37	0.338
Co3	N 1	2.072	1.84	0.37	0.534
					Sum2.361

Table S2-4. BVS for the Co4 atom in CIAC-131.

		Dist	R	B	BVal
Co4	O1	1.974	1.692	0.37	0.467
Co4	O4	2.075	1.692	0.37	0.355
C04	O13	1.933	1.692	0.37	0.521
C04	O14	1.992	1.692	0.37	0.444
Co4	S4	2.468	2.06	0.37	0.332
					Sum2.11
					$\mathbf{9}$

Table S3-1. BVS for the Co1 atom in CIAC-251.

		Dist	R	B	BVal
Co1	O1	2.155	1.692	0.37	0.286
Co1	O4	2.064	1.692	0.37	0.366
Co1	O5	1.999	1.692	0.37	0.436
Co1	O8	2.005	1.692	0.37	0.375
Co1	S4	2.432	2.06	0.37	0.366
Co1	S8	2.533	2.06	0.37	0.278
					Sum2.107

Table S3-2. BVS for the Co2 atom in CIAC-251.

		Dist	R	B	BVal
Co 2	O1	2.036	1.692	0.37	0.394
Co 2	O2	1.967	1.692	0.37	0.476
Co 2	O6	2.099	1.692	0.37	0.333
Co 2	O7	2.188	1.692	0.37	0.262
$\mathrm{Co2}$	S1	2.490	2.06	0.37	0.313
$\mathrm{Co2}$	S 6	2.511	2.06	0.37	0.296
					Sum2.074

Table S3-3. BVS for the Co 3 atom in CIAC-251.

		Dist	R	B	BVal
Co3	O3	2.024	1.692	0.37	0.408
Co3	O4	2.014	1.692	0.37	0.419
Co3	O7	2.067	1.692	0.37	0.363
Co3	O8	2.134	1.692	0.37	0.303
Co3	S7	2.519	2.06	0.37	0.289
					Sum1.782

Table S3-4. BVS for the Co4 atom in CIAC-251.

		Dist	R	B	BVal
Co4	O2	1.989	1.692	0.37	0.448
Co4	O3	1.999	1.692	0.37	0.436
Co4	O7	2.252	1.692	0.37	0.220
Co4	O9	2.049	1.692	0.37	0.381
Co4	S2	2.464	2.06	0.37	0.336
Co4	N1	2.031	1.84	0.37	0.597

IV. Magnetic Studies.

The magnetic properties of compounds CIAC-131 and CIAC-251, measured in an applied field of 1000 Oe at 2-300 K, is shown in Fig.S7. The $\chi_{\mathrm{M}} T$ values at room temperature are $66.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ and $21.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ for CIAC-131 and CIAC-251, respectively. Both decrease gradually first and then fall rapidly in the lower temperature region to $2.03 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ and $4.05 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ at 2 K . For each Co (II) center of CIAC-131 and CIAC-251, the experimental $\chi_{\mathrm{M}} T$ value at room temperature are $2.78 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ and $2.73 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, which are accord with the typical value of the $\mathrm{Co}(\mathrm{II})$ (the $\chi_{\mathrm{M}} T$ value normally ranges from 2.7 to $3.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ for $\mathrm{Co}(\mathrm{II})$). For these two compounds CIAC-131 and CIAC-251,fitting the experimental data in the range of $50-300 \mathrm{~K}$ to the Curie-Weiss law of $1 / \chi_{\mathrm{M}}=(T-\theta) / C$ with Curie constant (C) of $78.62 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ and $24.65 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, and Weiss constant (θ) of -52.99 K and 37.85 K , respectively. The negative Weiss constant (θ) value suggest antiferromagnetic interaction between the $\operatorname{Co}($ II $)$ centers[4].

Fig.S7. Plots of $\chi_{\mathrm{M}} \mathrm{T}$ vs. T and $1 / \chi_{\mathrm{M}}$ vs. T for CIAC-131(a) and CIAC-251(b) in a 1000 Oe field at 2-300 K.

V. pH Effect on $\mathbf{H g}$ (II) adsorption

The effect of pH on $\mathrm{Hg}(\mathrm{II})$ adsorption by CIAC-131 and CIAC-251 were investigated. As shown in Fig. S8, the removal efficiency of Hg (II) by CIAC$\mathbf{1 3 1}$ and CIAC-251 are 97.5% and 77.5%, respectively. That is, $\left\{\mathbf{C o}_{24}\right\}$ cage has better adsorption performance towards Hg (II) than $\left\{\mathbf{C o}_{8}\right\}$ cluster. When pH is less than 2, the removal efficiency are not high for both adsorbents because there are a lot of hydrogen ions in the aqueous solution which would compete with Hg (II) to bond the binding sites on the adsorbent surface [5] and the high acidity of the aqueous solution would lead to the partial collapse of CIAC-131 and CIAC-251 skeleton. The removal efficiency increase continuously when $\mathrm{pH}=3 \sim 6$, which is due to the less and less hydrogen ions in the solution to compete with $\mathrm{Hg}(\mathrm{II})$ to be adsorbed. The removal efficiency reach the maximum at $\mathrm{pH}=6$. And then the removal efficiency of Hg (II) by CIAC-131 decreased obviously with the increasing pH value while the decrease is not obvious for CIAC-251. And when $\mathrm{pH}>6.47$, mercury ions mainly exist as $\mathrm{Hg}(\mathrm{OH})_{2}$ which cannot enter the cage cavity of CIAC-131.

Fig.S8. Effect of pH on $\mathrm{Hg}(\mathrm{II})$ adsorption by CIAC-131 and CIAC-251. $\left(\mathrm{C}_{\mathrm{i}}=100 \mathrm{mg} / \mathrm{L}\right)$

VI. Selective Adsorption

Fig. S9. Adsorption of different metal ions from a mixture solution by CIAC-251.

VII. Adsorption isotherm

Fig. S10. The Langmuir plot for the $\mathrm{Hg}(\mathrm{II})$ adsorption of CIAC-251.

VIII.FT-IR Spectra

Fig. S11. FT-IR spectra of CIAC-131.

Fig. S12. FT-IR spectra of CIAC-251.

IX. TG Analysis

Fig. S13. TG curve of CIAC-131.

Fig. S14. TG curve of CIAC-251.

X. References

[1]N. Iki, C. Kabuto, T. Fukushima, H. Kumagai, H. Takeya, S. Miyanari, T. Miyashi, S. Miyano, Tetrahedron. 2000, 56, 1437-1443.
[2] G. M. Sheldrick, Acta Crystallogr., Sect. C:Cryst. Struct. Commun. 2015, 71, 3-8.
[3] G. J. Kleywegt, T. A. Jones, Acta Crystallogr. D. 1994,50, 178-185.
[4] Y. F.Bi, X. T.Wang, W. P.Liao, X. F.Wang, X. W.Wang, H. J.Zhang, S.Gao, J. Am. Chem. Soc. 2009, 131, 11650.
[5] I. Mobasherpour, E. Salahi, M. Pazouki, Desalination. 2011, 266, 142.

