Four Octamolybdate Complexes Constructed from a

Quinoline-imidazole-monoamide Ligand: Structures,

Electrochemical, Photocatalytic and Magnetic Properties

Lei Li, Xiang Wang,* Na Xu, Zhihan Chang, Guocheng Liu, Hongyan Lin and Xiuli Wang*

Complex 1									
Co(1)-O(1)	2 1569(18)	Co(1)-O(2)	2,0979(19)						
$C_0(1) - N(3)$	2.1300(10) 2.071(2)	00(1) 0(2)	2.0979(19)						
O(1)#1-Co(1)-O(1)	180.00(9)	O(2)-Co(1)-O(1)#1	89.79(8)						
O(2)#1- $Co(1)$ - $O(2)$	180.0	O(2) - Co(1) - O(1)	90.21(8)						
N(3)-Co(1)-O(1)#1	100.78(8)	N(3)-Co(1)-O(1)	79.22(8)						
N(3)-Co(1)-O(2)#1	91.91(8)	N(3)-Co(1)-O(2)	88.09(8)						
N(3)#1-Co(1)-N(3)	180.0								
Symmetry code for 1:	: #1 -x+1vz+1								
Complex 2									
Ni(1)-O(1)	2.087(3)	Ni(1)-N(3)	2.027(3)						
Ni(1)-O(13)	2.110(3)		~ /						
O(1)#1-Ni(1)-O(1)	180.0	O(1)#1-Ni(1)-O(13)	89.41(12)						
N(3)-Ni(1)-O(1)	88.69(13)	O(13)-Ni(1)-O(1)	90.59(12)						
N(3)-Ni(1)-O(1)#1	91.31(13)	N(3)#1-Ni(1)-N(3)	180.0						
O(13)-Ni(1)-N(3)	80.87(12)	O(13)-Ni(1)-N(3)#1	99.13(12)						
O(13)#1-Ni(1)-O(13)	180.00(14)								
Symmetry code for 2:	#1 -x+1,-y,-z+1								
Complex 3									
Zn(1)-O(2)	2.173(4)	Zn(1)-N(3)	2.032(4)						
Zn(1)-O(1)	2.169(4)								
O(2)-Zn(1)-O(2)#1	180.0	O(11)#1-Zn(1)-O(2)	89.93(15)						
O(11)-Zn(1)-O(2)	90.07(15)	O(11)-Zn(1)-O(11)#1	180.0						
N(3)-Zn(1)-O(2)#1	88.24(15)	N(3)-Zn(1)-O(2)	91.76(15)						
N(3)#1-Zn(1)-O(11)	99.89(15)	N(3)-Zn(1)-O(11)	80.11(15)						
N(3)-Zn(1)-N(3)#1	180.0								
Symmetry code for 3 :	#1 -x+1,-y+1,-z								
Complex 4									
Cu(1)-O(1W)#1	1.971(4)	Cu(1)-O(1W)	1.955(4)						
Cu(1)-O(1)	2.001(4)	Cu(1)-O(2)	2.373(4)						
Cu1-Cu1#1	2.863	Cu(1)-N(1)	1.953(5)						
O(1W)-Cu(1)-O(1W)#	1 86.34(17)	O(1W)#1-Cu(1)-O(1)	166.83(17)						
O(1W)-Cu(1)-O(1)	92.32(16)	O(1W)-Cu(1)-O(2)	86.13(16)						

Table. S1. Selected bond distances (Å) and angles (°) for complexes 1-4.

Supplementary Material (ESI) for CrystEngComm										
I his journal is () The Royal Society of Chemistry										
O(1W)#1-Cu(1)-O(2)	86.58(16)	O(1)-Cu(1)-O(2)	106.42(16)							
N(1)-Cu(1)-O(1W)#1	100.56(18)	N(1)-Cu(1)-O(1W)	169.4(2)							
N(1)-Cu(1)-O(1)	82.78(18)	N(1)-Cu(1)-O(2)	86.24(19)							
Cu(1)-O(1W)-Cu(1)#1	93.66(16)									
Symmetry code for 4: #1 -2	x+1,-y+2,-z+1									

Fig. S1 Structural motives in **2:** (a) the coordination mode of metal center and polyoxoanion. Symmetry code: #1: -x+1,-y,-z+1; (b) the mononuclear unit $[Ni(HL)_2]^{4+}$; (c) the 1D long chain fragment; (d) the 2D supramolecular layer.

Fig. S2 Structural motives in **3**: (a) the coordination mode of metal center and polyoxoanion. Symmetry code: #1: -x+1,-y+1,-z; (b) the mononuclear unit $[Zn(HL)_2]^{4+}$; (c) the 1D chain fragment; (d) the 2D supramolecular layer.

Fig. S3 PXRD patterns of complexes 1-4.

Fig. S4 The IR spectra of complexes 1-4.

Fig. S5 (a-c) Cyclic voltammograms of the 1-CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution (Scan rate: 60 mV·s⁻¹) containing 0, 2, 4, 6 and 8 mM bromate, nitrite, H_2O_2 ; (d-f) Cyclic voltammograms of the 3-CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution (Scan rate: 60 mV·s⁻¹) containing 0, 2, 4, 6 and 8 mM bromate, nitrite, H_2O_2 ; (g-i) Cyclic voltammograms of the 4-CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution (Scan rate: 60 mV·s⁻¹) containing 0, 2, 4, 6 and 8 mM bromate, nitrite, H_2O_2 ; (g-i) Cyclic voltammograms of the 4-CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution (Scan rate: 60 mV·s⁻¹) containing 0, 2, 4, 6 and 8 mM bromate, nitrite, H_2O_2 ; (g-i) Cyclic voltammograms of the 4-CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution (Scan rate: 60 mV·s⁻¹) containing 0, 2, 4, 6 and 8 mM bromate, nitrite, H_2O_2 .

Fig. S6 Cyclic voltammograms of the 1-CPE (a), 3-CPE (b) and 4-CPE (c) in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution (Scan rate: 60 mV·s⁻¹) containing 0, 2, 4, 6 and 8 mM AA.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Fig. S7 Current response of **2**-CPE with successive addition of H_2O_2 (a) potassium nitrite (b) into stirring 0.1 M $H_2SO_4 + 0.5$ M Na₂SO₄ aqueous solution at -0.2 V per 30 s interval (Inset: the plot of response current *vs* concentrations of substrate).

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Fig. S8 (a-c) Current response of 1-CPE with successive addition of potassium bromate, potassium nitrite, and H_2O_2 into stirring 0.1 M $H_2SO_4 + 0.5$ M Na₂SO₄ aqueous solution at -0.2 V per 30 s interval (Inset: the plot of response current *vs* concentrations of substrate); (d-f) Current response of **3**-CPE with successive addition of potassium bromate, potassium nitrite, and H_2O_2 into stirring 0.1 M $H_2SO_4 + 0.5$ M Na₂SO₄ aqueous solution at -0.2 V per 30 s interval (Inset: the plot of response current *vs* concentrations of substrate); (g-i) Current response of **4**-CPE with successive addition of potassium nitrite, and H_2O_2 into stirring 0.1 M $H_2SO_4 + 0.5$ M Na₂SO₄ aqueous solution at -0.2 V per 30 s interval (Inset: the plot of response current *vs* concentrations of substrate); (g-i) Current response of **4**-CPE with successive addition of potassium bromate, potassium nitrite, and H_2O_2 into stirring 0.1 M $H_2SO_4 + 0.5$ M Na₂SO₄ aqueous solution at -0.2 V per 30 s interval (Inset: the plot of response current *vs* concentrations of substrate).

Fig. S9 Current response of 1-CPE (a), 3-CPE (b) and 4-CPE (c) with successive addition of AA into stirring 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution at 0.2 V per 30 s interval (Inset: the plot of response current *vs* concentrations of substrate).

Material		1-CPE	2- CPE	3- CPE	4- CPE
	BrO ₃ -	15	1.67	45	33
Detection limit	NO ₂ -	348	37	1114	510
(µmol L ^{−1})	H_2O_2	2263	98	6134	520
	AA	330	6	230	87
	BrO ₃ -	10-812	10-795	10-848	10-665
Linear Range	NO ₂ -	100-8000	100-8000	100-8000	100-8000
(µmol L⁻¹)	H ₂ O ₂	100-8000	100-8000	100-8000	100-8000
	AA	100-8000	100-8000	100-8000	100-8000
	BrO ₃ -	3.64×10-3	2.09×10-3	4.26×10-3	6.05×10-3
Sensitivity	NO ₂ -	1.645×10-4	9.414×10 ⁻⁵	1.732×10 ⁻⁴	3.941×10 ⁻⁴
(µA cm ⁻² mM ⁻¹)	H ₂ O ₂	2.531×10 ⁻⁵	3.554×10-5	6.502×10 ⁻⁵	3.861×10-4
	AA	1.195×10-4	2.382×10-5	2.65×10-4	3.603×10-4

Table. S2 Parameters for potassium bromate, potassium nitrite, H_2O_2 and AA determination using 1-4 CPEs

Fig. S10 Current response for potassium bromate (a), potassium nitrite (b) and potential interference substances on **1**-CPE in 0.1 M H₂SO₄ + 0.5 M Na₂SO₄; Current response for potassium bromate (c), potassium nitrite (d) and potential interference substances on **3**-CPE in 0.1 M H₂SO₄ + 0.5 M Na₂SO₄; Current response for potassium bromate (e), potassium nitrite (f) and potential interference substances on **4**-CPE in 0.1 M H₂SO₄ + 0.5 M Na₂SO₄.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Fig. S11 Diffuse reflection spectra of Kubelka–Munk (K-M) function versus energy (eV) of complexes 1-4.

Fig. S12 Photocatalytic reaction of MO solutions within 180 min in the presence of complexes 1-4 under UV irradiation.

Fig. S13 Photocatalytic reaction of RhB solutions within 180 min in the presence of complexes 1-4 under UV irradiation.

Fig. S14 PXRD patterns of complexes 1 and 3 on MB after catalysis.