Supporting Information

Figure captions:

Fig. S1 The four neighboring $[Eu_2(COO)_4]$ units linked by BDC ligand form the rhombus motif.

Fig. S2 The TGA curves of Sm-CP, Gd-CP, Tb-CP and Dy-CP.

Fig. S3 Emission spectra of the free BDC and IP ligands, the excitation spectrum of free BDC ligand.

Fig. S4 Fluorescence lifetime decay curve of complex 4.

Fig. S5 Fluorescence lifetime decay curve of complex 2.

Fig. S6 The luminescence intensity of Eu-CP at 615 nm before (a) and after (b) immersed in water for 7 days.

Fig. S7 PXRD patterns of Eu-CP in solutions with pH= 3, 10 and after immersed in emodin.

Fig. S8 The recycling experiments of Eu-CP after luminescent sensing for emodin.

Fig. S9 The SV plot for the quenching effect of Ag^+ on Eu-CP under 375 and 400 nm(a); the SV plot for the quenching effect of Fe^{3+} on Eu-CP under 375 and 400 nm(b); the SV plot for the quenching effect of MnO_4^- on Eu-CP under 375 and 400 nm (c); the SV plot for the quenching effect of $Cr_2O_7^{2-}$ on Eu-CP under 375 and 400 nm(d); the SV plot for the quenching effect of CrO_4^{2-} on (d) under 375 and 400 nm(e). **Fig. S10** The UV-Vis absorption spectra for Fe^{3+} , MnO_4^- , CrO_4^{2-} , $Cr_2O_7^{2-}$ and the excitation spectrum of Eu-CP.

Table S1 Selected bond lengths [Å] and angles [°] for complexes 1-5. **Table S2** A comparison of the K_{sv} values and the detection limits of Ag⁺, Fe³⁺, MnO₄⁻, Cr₂O₇²⁻, CrO₄²⁻ with other reported.

Fig. S5

(e)

Table S1

				1			
Sm(1)	O(3) ¹	2.353(3)	Sm(1)	O(1)	2.354(3)		
Sm(1)	$O(4)^2$	2.391(3)	Sm(1)	O(6)	2.363(3)		
Sm(1)	$O(7)^{3}$	2.407(3)	Sm(1)	O(5)	2.512(3)		
Sm(1)	N(1)	2.615(3)	Sm(1)	N(2)	2.651(3)		
O(3)	$Sm(1)^{4}$	2.353(3)	O(4)	$Sm(1)^{2}$	2.391(3)		
O(7)	$Sm(1)^{3}$	2.407(3)					
O(3) ¹	Sm(1)	O(1)	141.93(10)	O(3)	¹ Sm(1)	$O(4)^2$	123.24(11)
O(3) ¹	Sm(1)	O(6)	70.14(10)	O(3)	¹ Sm(1)	$O(7)^{3}$	85.71(11)
O(3) ¹	Sm(1)	O(5)	69.05(11)	O(3)	¹ Sm(1)	N(1)	85.40(10)
O(3) ¹	Sm(1)	N(2)	132.49(10)	O(1)	Sm(1)	$O(4)^2$	87.63(10)
O(1)	Sm(1)	O(6)	143.72(11)	O(1)	Sm(1)	$O(7)^{3}$	83.19(11)
O(1)	Sm(1)	O(5)	72.89(11)	O(1)	Sm(1)	N(1)	86.28(10)
O(1)	Sm(1)	N(2)	73.41(11)	O(4)	² Sm(1)	$O(7)^{3}$	72.61(11)
$O(4)^2$	Sm(1)	O(5)	142.89(11)	O(4)	² Sm(1)	N(1)	135.10(10)
$O(4)^2$	Sm(1)	N(2)	73.49(10)	O(6)	Sm(1)	$O(4)^2$	79.85(10)
O(6)	Sm(1)	$O(7)^{3}$	123.96(12)	O(6)	Sm(1)	O(5)	133.43(11)
O(6)	Sm(1)	N(1)	79.31(11)	O(6)	Sm(1)	N(2)	70.40(11)
$O(7)^{3}$	Sm(1)	O(5)	73.92(11)	O(7)	³ Sm(1)	N(1)	149.89(11)
$O(7)^{3}$	Sm(1)	N(2)	139.22(10)	O(5)	Sm(1)	N(1)	76.03(11)
O(5)	Sm(1)	N(2)	127.05(11)	N(1)	Sm(1)	N(2)	62.15(10)

1_{1+X,1+Y,+Z}; 2_{1-X,-Y,1-Z}; 3_{2-X,1-Y,1-Z}; 4_{-1+X,-1+Y,+Z}

			2				
Eu(1)	$Eu(1)^{1}$	4.4105(6)	Eu(1)	O(1)	2.340(3)		
Eu(1)	O(3) ²	2.349(3)	Eu(1)	O(4) ³	2.376(3)		
Eu(1)	O(5)	2.354(3)	Eu(1)	O(7)	2.512(3)		
Eu(1)	O(6) ¹	2.397(3)	Eu(1)	N(1)	2.642(4))	
Eu(1)	N(2)	2.608(4)	O(3)	$Eu(1)^{4}$	2.349(3)	
O(4)	$Eu(1)^{3}$	2.376(3)	O(6)	$Eu(1)^{1}$	2.397(3)	
O(1)	Eu(1)	O(3) ²	142.09(11)	O(1)	Eu(1)	O(4) ³	87.52(11)
O(1)	Eu(1)	O(5)	143.64(12)	O(1)	Eu(1)	O(7)	72.72(11)
O(1)	Eu(1)	$O(6)^1$	83.42(12)	O(1)	Eu(1)	N(1)	73.07(12)
O(1)	Eu(1)	N(2)	86.29(12)	O(3) ²	Eu(1)	O(4) ³	123.25(12)
O(3) ²	Eu(1)	O(5)	70.14(12)	O(3) ²	Eu(1)	O(7)	69.38(12)
$O(3)^{2}$	Eu(1)	$O(6)^1$	85.73(12)	O(3) ²	Eu(1)	N(1)	132.59(12)
O(3) ²	Eu(1)	N(2)	85.36(12)	O(4) ³	Eu(1)	O(7)	142.34(11)
O(4) ³	Eu(1)	$O(6)^1$	72.41(12)	O(4) ³	Eu(1)	N(1)	73.58(11)
O(4) ³	Eu(1)	N(2)	135.13(11)	O(5)	Eu(1)	O(4) ³	79.68(12)
O(5)	Eu(1)	O(7)	134.06(11)	O(5)	Eu(1)	O(6) ¹	123.54(13)
O(5)	Eu(1)	N(1)	70.69(12)	O(5)	Eu(1)	N(2)	79.53(12)
O(7)	Eu(1)	N(1)	127.02(12)	O(7)	Eu(1)	N(2)	76.47(11)
O(6) ¹	Eu(1)	O(7)	73.68(12)	O(6) ¹	Eu(1)	N(1)	139.12(12)
O(6) ¹	Eu(1)	N(2)	150.11(12)	N(2)	Eu(1)	N(1)	62.10(11)

1_{2-X,1-Y,1-Z;} 2_{1+X,1+Y,+Z;} 3_{1-X,-Y,1-Z;} 4_{-1+X,-1+Y,+Z}

				3				
Gd(1)	O(1)	2.330(3)		Gd(1)	O(3) ¹	2.335(3)	
Gd(1)	O(6)	2.343(3)		Gd(1)	O(7)	2.495(3)	
Gd(1)	$O(4)^2$	2.360(2)		Gd(1)	$O(5)^{3}$	2.388(2)	
Gd(1)	N(1)	2.588(3)		Gd(1)	N(2)	2.627(3)	
O(3)	$Gd(1)^{4}$	2.335(3)		O(4)	$Gd(1)^{2}$	2.360(2)	
O(5)	$Gd(1)^{3}$	2.389(2)						
O(1)	Gd(1)	O(3) ¹	141.67(9)	O(1)	Gd((1)	O(6)	143.58(10)
O(1)	Gd(1)	O(7)	72.65(10)	O(1)	Gd((1)	$O(4)^2$	87.61(9)
O(1)	Gd(1)	$O(5)^{3}$	83.50(10)	O(1)	Gd((1)	N(1)	86.62(9)
O(1)	Gd(1)	N(2)	73.35(10)	O(3)	¹ Gd((1)	O(6)	70.56(10)
O(3) ¹	Gd(1)	O(7)	69.02(10)	O(3)	¹ Gd((1)	$O(4)^2$	123.41(9)
O(3) ¹	Gd(1)	$O(5)^{3}$	85.40(10)	O(3)	¹ Gd((1)	N(1)	84.92(10)
O(3) ¹	Gd(1)	N(2)	132.80(9)	O(6)	Gd((1)	O(7)	133.84(10)
O(6)	Gd(1)	$O(4)^2$	79.81(9)	O(6)	Gd((1)	O(5) ³	123.69(10)
O(6)	Gd(1)	N(1)	79.21(9)	O(6)	Gd((1)	N(2)	70.32(10)
O(7)	Gd(1)	N(1)	75.94(9)	O(7)	Gd((1)	N(2)	127.08(9)
O(4) ²	Gd(1)	O(7)	142.60(9)	O(4)	² Gd((1)	O(5) ³	72.44(9)

O(4) ²	Gd(1)	N(1)	135.54(9)	O(4) ²	Gd(1)	N(2)	73.40(9)	
O(5) ³	Gd(1)	O(7)	73.97(9)	$O(5)^{3}$	Gd(1)	N(1)	149.89(10)	
O(5) ³	Gd(1)	N(2)	139.16(10)	N(1)	Gd(1)	N(2)	62.72(9)	

1_{-1+X,-1+Y,+Z}; 2_{1-X,2-Y,1-Z}; 3_{-X,1-Y,1-Z}; 4_{1+X,1+Y,+Z}

				4			
Tb(1)	O(4) ¹	2.324(2)	Tb(1)	O(5)	2.325(2)		
Tb(1)	O(1)	2.312(2)	Tb(1)	$O(3)^2$	2.348(2)		
Tb(1)	$O(6)^{3}$	2.369(2)	Tb(1)	O(7)	2.480(3)		
Tb(1)	N(1)	2.574(3)	Tb(1)	N(2)	2.610(3)		
O(4)	Tb(1) ⁴	2.324(2)	O(3)	$Tb(1)^{2}$	2.348(2)		
O(6)	Tb(1) ³	2.369(2)					
O(4) ¹	Tb(1)	O(5)	70.62(9)	O(4)	¹ Tb(1)	O(3) ²	123.43(9)
O(4) ¹	Tb(1)	$O(6)^{3}$	85.23(9)	O(4)	¹ Tb(1)	O(7)	68.80(9)
O(4) ¹	Tb(1)	N(1)	84.56(9)	O(4)	¹ Tb(1)	N(2)	132.72(9)
O(5)	Tb(1)	$O(3)^2$	80.01(9)	O(5)	Tb(1)	$O(6)^{3}$	123.70(9)
O(5)	Tb(1)	O(7)	133.65(9)	O(5)	Tb(1)	N(1)	79.02(9)
O(5)	Tb(1)	N(2)	70.18(9)	O(1)	Tb(1)	$O(4)^1$	141.57(9)
O(1)	Tb(1)	O(5)	143.55(9)	O(1)	Tb(1)	O(3) ²	87.60(8)
O(1)	Tb(1)	$O(6)^{3}$	83.65(9)	O(1)	Tb(1)	O(7)	72.78(9)
O(1)	Tb(1)	N(1)	86.85(9)	O(1)	Tb(1)	N(2)	73.46(9)
O(3) ²	Tb(1)	$O(6)^{3}$	72.35(9)	O(3)	² Tb(1)	O(7)	142.51(9)
O(3) ²	Tb(1)	N(1)	135.95(9)	O(3)	² Tb(1)	N(2)	73.61(9)
$O(6)^{3}$	Tb(1)	O(7)	73.94(9)	O(6)	³ Tb(1)	N(1)	149.73(9)
O(6) ³	Tb(1)	N(2)	139.41(9)	O(7)	Tb(1)	N(1)	75.80(9)
O(7)	Tb(1)	N(2)	127.18(9)	N(1)	Tb(1)	N(2)	62.93(9)

 $1_{1+X,1+Y,+Z;}2_{1-X,-Y,1-Z;}3_{2-X,1-Y,1-Z;}4_{-1+X,-1+Y,+Z}$

			4	5			
Dy(1)	O(5)	2.359(3)	Dy(1)	O(4)	2.305(3)		
Dy(1)	O(7)	2.480(3)	Dy(1)	O(6) ¹	2.323(3)		
Dy(1)	O(1)	2.341(3)	Dy(1)	$O(2)^{1}$	2.314(3)		
Dy(1)	N(1)	2.562(4)	Dy(1)	N(2)	2.606(4)		
$Dy(1)^{1}$	O6	2.323(3)	$Dy(1)^{1}$	O2	2.314(3)		
O(5)	Dy(1)	O(7)	73.73(12)	O(5)	Dy(1)	N(1)	149.46(13)
O(5)	Dy(1)	N(2)	139.47(12)	O(4)	Dy(1)	O(5)	83.85(12)
O(4)	Dy(1)	O(7)	72.41(11)	O(4)	Dy(1)	O(6) ¹	143.64(12)
O(4)	Dy(1)	O(1)	87.88(11)	O(4)	Dy(1)	$O(2)^{1}$	141.58(11)
O(4)	Dy(1)	N(1)	86.73(12)	O(4)	Dy(1)	N(2)	73.41(12)
O(7)	Dy(1)	N(1)	75.74(12)	O(7)	Dy(1)	N(2)	127.16(11)

O(6) ¹	Dy(1)	O(5)	123.46(13)	O(6) ¹	Dy(1)	O(7)	134.02(12)	
O(6) ¹	Dy(1)	O(1)	79.70(12)	O(6) ¹	Dy(1)	N(1)	79.31(12)	
O(6) ¹	Dy(1)	N(2)	70.32(12)	O(1)	Dy(1)	O(5)	72.59(12)	
O(1)	Dy(1)	O(7)	142.45(12)	O(1)	Dy(1)	N(1)	136.06(12)	
O(1)	Dy(1)	N(2)	73.45(12)	$O(2)^{1}$	Dy(1)	O(5)	84.98(12)	
$O(2)^{1}$	Dy(1)	O(7)	69.17(12)	$O(2)^{1}$	Dy(1)	O(6) ¹	70.56(12)	
$O(2)^{1}$	Dy(1)	O(1)	123.19(11)	$O(2)^{1}$	Dy(1)	N(1)	84.56(12)	
$O(2)^{1}$	Dy(1)	N(2)	132.86(12)	N(1)	Dy(1)	N(2)	63.23(12)	

 $1_{1-X,-Y,1-Z;}2_{2-X,1-Y,1-Z;}3_{1-X,1-Y,1-Z}$

Table S2

Complexes	$K_{sv}(\mathbf{M}^{-1})$	LOD for Ag ⁺ (mol/L)	Reference
complex 2(λ ex=375nm)	2.74×10 ⁴	5.1×10 ⁻⁵	This article
complex 2 (λ ex=400nm)	3.58×10 ⁴	3.9×10 ⁻⁵	This article
Eu-MOF	8.61×10^4	4.2×10 ⁻⁷	11
Eu-MOF	/	2.3×10 ⁻⁷	63

Complexes	$K_{sv}(\mathbf{M}^{-1})$	LOD for Fe ³⁺ (mol/L)	Reference
complex 2(λ ex=375nm)	2.33×10 ⁴	6.0×10 ⁻⁵	This article
complex 2(λ ex=400nm)	2.91×10^{4}	4.8×10 ⁻⁵	This article
Eu-MOF	1.25×10^{4}	2.3×10 ⁻⁵	64
Eu-MOF	/	2.6×10 ⁻⁵	65
Tb-MOF	/	1.8×10 ⁻⁴	66

Complexes	$K_{sv}(M^{-1})$	LOD for MnO ₄ -(mol/L)	Reference
complex 2(λ ex=375nm)	1.51×10 ⁴	9.3×10 ⁻⁵	This article
complex 2(λ ex=400nm)	1.61×10^4	8.7×10 ⁻⁵	This article
Eu-MOF	8.47×10^{3}	1.4×10^{-6}	67
Eu-MOF	3.18×10 ³	1.1×10^{-5}	68

Complexes	$K_{sv}(\mathbf{M}^{-1})$	LOD for Cr ₂ O ₇ ²⁻ (mol/L)	Reference
complex 2(λ ex=375nm)	2.19×10 ⁴	6.4×10 ⁻⁵	This article
complex 2(λ ex=400nm)	2.47×10^{4}	5.7×10 ⁻⁵	This article
Eu-MOF	2.17×10^{4}	3.8×10 ⁻⁶	46
Eu-MOF	/	2.2×10 ⁻⁵	65
Eu-MOF	5.65×10 ³	6.1×10 ⁻⁶	68
Zn-MOF	2.33×10 ³	4.6×10 ⁻⁴	69

Complexes	$K_{sv}(\mathbf{M}^{-1})$	LOD for CrO ₄ ²⁻ (mol/L)	Reference
complex 2(λ ex=375nm)	2.34×10 ⁴	6.0 ×10 ⁻⁵	This article
complex 2(λ ex=400nm)	2.97×10^{4}	4.6 ×10 ⁻⁵	This article
Eu-MOF	1.59×10^{4}	2.4×10 ⁻⁶	46
Cu-MOF	2.10×10^4	1.6×10 ⁻⁵	70
Eu-MOF	3.56×10^{3}	1.1×10^{-4}	71