Refractive properties of the α-BaGeO₃ crystal and their origins: a density function theory study

Songming Wan,*^{ab} Shengjie Jiang,^{ac} Yu Zeng,^{ac} and Wen Luo^a

^a Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics

and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China

^b State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China

^c University of Science and Technology of China, Hefei 230026, China

Table of Contents

Table S1 Convergence test for the total energy of $Ba_2MgGe_2O_7$ with respect to the Γ -centered k-point grid	S2
Fig. S1 Convergence test for the total energy of Ba ₂ MgGe ₂ O ₇ with respect to the energy cutoff.	S2
Table S2 Convergence test for the total energy of α -BaGeO ₃ with respect to the Γ -centered k-point grid	S3
Fig. S2 Convergence test for the total energy of α -BaGeO ₃ with respect to the energy cutoff.	S3
Fig. S3 Calculated band structure of Ba ₂ MgGe ₂ O ₇	S4
Fig. S4 Calculated refractive dispersion curves of α -BaGeO ₃ as a light beam propagates along the crystallographic <i>a</i> axis with the polarized directions perpendicular/parallel to the <i>ac</i>	
crystallographic plane.	S 4

<i>k</i> -point	total energy (eV)
$1 \times 1 \times 1$	-12465.43013
$1 \times 1 \times 2$	-12465.56520
$2 \times 2 \times 3$	-12465.37235
$3 \times 3 \times 4$	-12465.37167

Table S1 Convergence test for the total energy of $Ba_2MgGe_2O_7$ with respect to the Γ -centered k-point grid

(The energy cutoff is fixed at 900 eV)

Fig. S1 Convergence test for the total energy of $Ba_2MgGe_2O_7$ with respect to the energy cutoff (The Γ -centered *k*-point grid is fixed at $2 \times 2 \times 3$).

Table S1 and Fig. S1 present the results of convergence tests for the total energy of $Ba_2MgGe_2O_7$ with respect to the Γ -centered k-point grid and the energy cutoff, respectively. The results show that an energy cutoff of 900 eV and a Γ -centered k-point grid of $2 \times 2 \times 3$ are sufficient to yield a converged total energy.

<i>k</i> -point	total energy (eV)
$1 \times 1 \times 1$	-12600.76069
$2 \times 2 \times 2$	-12600.97733
$3 \times 3 \times 3$	-12600.97682

Table S2 Convergence test for the total energy of α -BaGeO₃ with respect to the Γ -centered *k*-point grid (The energy cutoff is fixed at 800 eV)

Fig. S2 Convergence test for the total energy of α -BaGeO₃ with respect to the energy cutoff (The Γ -centered *k*-point grid is fixed at 2 × 2 × 2).

Table S2 and Fig. S2 present the results of convergence tests for the total energy of α -BaGeO₃ with respect to the Γ -centered *k*-point grid and the energy cutoff, respectively. The results show that an energy cutoff of 800 eV and a Γ -centered *k*-point grid of 2 × 2 × 2 are sufficient to yield a converged total energy.

Fig. S3 Calculated band structure of Ba₂MgGe₂O₇.

Fig. S3 presents the calculated band structure of $Ba_2MgGe_2O_7$. The crystal is an indirect band material with a calculated band gap of 3.678 eV. As compared with the experimental band gap of 5.124 eV, a scissors operator of 1.446 eV was used to compensate the underestimation of the band gap on the $Ba_2MgGe_2O_7$ optical properties.

Fig. S4 Calculated refractive dispersion curves of α -BaGeO₃ when a light beam propagates along the crystallographic *a* axis with the polarized directions perpendicular/parallel to the *ac* crystallographic plane.

Fig. S4 presents n_0 and n_e of α -BaGeO₃ as a function of wavelength when a light beam propagates along the crystallographic *a* axis, which reveals that calculated refractive index and birefringence are almost invariable with the wavelength in the mid-IR region.