Supplementary Information

Of

Design of size-controlled Au nanoparticles loaded on the surface of

ZnO for ethanol detection

Fig. S1. Sensor structure.

Fig. S2. Survey (a), Zn 2p (b), O 1s (c) and Au 4f (d) XPS spectra of

ZnO-Au -000 sample.

Fig. S3. Survey (a), Zn 2p (b) and O 1s (c) XPS spectra of original

sample.

Fig. S4. Au particle size distribution of sample ZnO-Au-000 to

ZnO-Au-600.

Fig. S5. (a) HAADF-STEM image of the sample ZnO-Au-600; (b) corresponding Au elemental maps of the selected area, respectively.

Fig. S6 Response of pure ZnO NWs sensor to the test temperature in 100 ppm ethanol.

Sample	Best Response (50ppm)	Optimum Temperature (°C)
original ZnO	65.1 (100ppm)	275°C
ZnO-Au-000	11.9	
ZnO-Au-200	108.2	125°C
ZnO-Au-300	96.1	175°C
ZnO-Au-400	123.2	175°C
ZnO-Au-500	133.3	175°C
ZnO-Au-600	151.8	200°C

Tab. S1. The best response value and Optimum Temperature of different

sensors in100 ppm ethanol.

Fig. S7 Relationship between response and relative humidity at 175 °C in 50ppm ethanol.

Fig. S8 The resistance reproducibility of ZnO-Au-500 sensor upon 6-

cycle tests to 50 ppm ethanol at 175°C.