Supporting Information

The positional isomerism in the bimetal nanocluster

Lizhong He*, Xinhai He, Junbo Wang, Yinhu Qu, Xiaolei Su, Jiaojiao Zheng, Xiaoliang Zhao

School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China

1. Experimental Details

1.1 Chemicals.

Silver nitrate (AgNO₃, 99.99%), Sodium borohydride (NaBH₄, 98.0%), Triphenylphosohine and 2-Ethylbenzenethiol (95%) were purchased from Aladdin. Tetrachloroauric(III) acid (HAuCl₄•4H₂O, 99.7%) was obtained from Shanghai chemical reagent co., ltd. Methanol (99.5%) and dichloromethane (AR) were purchased from Sinopharm chemical reagent co., ltd. All other chemicals were of analytical grade, and deionized water was used throughout the experiments, produced with a Milli-Q NANO pure water system (resistivity 18.2 M Ω cm).

1.2 Synthesis of Au₁₂Ag₃₂-1 nanocluster.

The synthesis of atomically precise $Au_{12}Ag_{32}$ -1 nanocluster is called one-pot synthesis. In brief, to obtain the target nanocluster with precise structure, 80 mg Silver nitrate (AgNO₃) and 20 mg Tetrachloroauric (III) acid (HAuCl₄•4H₂O) were completely dissolved in 5mL of methanol and 5mL dichloromethane under vigorous stirring, after 15minutes, the mixed solution was cooled to 0 °C in an ice bath. Then, 200 mg Triphenylphosohine (PPh₃) and 70µL 2-Ethylbenzenethiol were added quickly for 20 minutes. Subsequently, 110 mg of solid NaBH₄ which dissolved in 2mL ice-cold pure water were added drop by drop using pipettor. The recitation was aged for 11h in an ice-bath under strring and the color of the total solution changed from light grey to dark immediately. The aqueous phase was discarded and the crude product was washed with CH₃OH four times to remove inorganic salt and excess thiolate utterly.

1.3 Synthesis of $Au_{12}Ag_{32}$ -2 nanocluster. (The nanoclusters were synthesized following literature report S1).

1.4 Single-crystal growth and analysis.

Black crystals were formed from a CH_2Cl_2 /hexane solution of the nanoclusters at 4°C after about three months. The diffraction data for $Au_{12}Ag_{32}$ nanoclusters were collected at 173K on a Bruker APEX DUO X-raydiffractometer using Cu Ka radiation ($l_1/41.54184$ Å).

1.5 Characterization

Ultraviolet-visible-near-infrared absorption measurements were performed on a Shimadzu UV-

3600 spectrophotometer (DCM as solvent). The single-crystal X-ray diffraction data were collected on a Bruker D8 VENTURE AXS photon 100 diffractometer with helios mx multilayer monochromator Mo K α radiation ($\lambda = 0.71083$ Å). Thermogravimetric analysis (TGA) (~ 6 mg sample used) was conducted in a N₂ atmosphere (flow rate ~ 50 mL/min) using a TG/DTA 6300 analyzer (Seiko Instruments, Inc.), and the heating rate was 10 °C/min. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250Xi XPS spectrometer (Thermo Scientific, America), using a monochromatized Al K α source and equipped with an Ar⁺ ion sputtering gun.

2. Supporting Figures

Figure S1. The total structures of 3, 4-difluorothiophenol (left) and 2ethylbenzenethiol (right). Color labels: light green = F, yellow = S, white = H, gray = C.

Figure S2. TGA of $Au_{12}Ag_{32}(2\text{-EBT})_{26}(PPh_3)_4$ nanocluster.

Figure S3. XPS spectrum of Au₁₂Ag₃₂(2-EBT)₂₆(PPh₃)₄ nanocluster.

Figure S4. XPS spectrum of Ag3d in the Au₁₂Ag₃₂(2-EBT)₂₆(PPh₃)₄ nanocluster.

Figure S5. XPS spectrum of Au4f in the Au₁₂Ag₃₂(2-EBT)₂₆(PPh₃)₄ nanocluster.

Figure S6. The totally surface staple structure of $Au_{12}Ag_{32}(2-EBT)_{26}(PPh_3)_4$ nanocluster (left) and $Ag_{32}Ag_{12}(3,4-DFT)_{30}$ nanocluster (right). Color labels: Ag, light blue; S, yellow; P, pink.

Figure S7. The detailed structure of four types of surface staples in the $Au_{12}Ag_{32}(2-EBT)_{26}(PPh_3)_4$ nanocluster. Color labels: Ag, light blue; S, yellow; P, pink.

Figure S8. Bond lengths of $Au_{12}Ag_{32}(2-EBT)_{26}(PPh_3)_4$ nanocluster. Color labels: Au, green; Ag, light blue.

Figure S9. Bond lengths of $Au_{12}Ag_{32}(3,4-DFT)_{30}$ nanocluster. Color labels: Au, brown; Ag, pink.

Figure S10. Bond lengths of $Ag_{44}(3,4-DFT)_{30}$ nanocluster. Color labels: Ag, brown and purple.

Figure S11. Unit cell of Ag₃₂Ag₁₂(2-EBT)₂₆(PPh₃)₄ nanocluster. Color labels: Au, red; Ag, blue; S, yellow; P, pink; C, gray; H, white.

Figure S12. UV/Vis spectrum of Au₁₂Ag₃₂(2-EBT)₂₆(PPh₃)₄ nanocluster.

3 Single crystal data

3.1 Single crystal data for $Ag_{32}Au_{12}$ nanocluster

Table 1. Crystal data and structure refinement for $Ag_{32}Au_{12}$.

Empirical formula	$C_{280}H_{294}Ag_{32}Au_{12}P_4S_{26}$
Formula weight	10432.01
Temperature/ K	173
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	a=21.071(3) Å α = 80.137(4)°
	b=21.271(3) Å β = 82.278(4)°
	c=36.786(5) Å $\gamma = 78.032(4)^{\circ}$
Volume/ Å ³	15807(4) Å ³
Ζ	2
$\rho_{calc}g/cm^3$	2.192
μ/mm ⁻¹	7.708
F(000)	9804.0
Index ranges	-27<=h<=21, -27<=k<=27, -48<=l<=43
Reflections collected	140783
Independent reflections	73291 [R(int) = 0.0861]
Theta range for data collection	1.976 to 27.762°
Completeness to theta = 25.242°	99.1 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	73291 / 1733 / 3163
Goodness-of-fit on F ²	1.033
Final R indices [I>2sigma(I)]	$R_1 = 0.0963, wR_2 = 0.2516$
R indices (all data)	$R_1 = 0.1697, wR_2 = 0.3022$
Extinction coefficient	n/a

Largest diff. peak and hole/ e Å ⁻³	4.748 and -7.871
--	------------------

4. References:

(S1) Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; Hakkinen, H.; Zheng, N. All-thiol-stabilized Ag_{44} and $Au_{12}Ag_{32}$ nanoparticles with single-crystal structures. *Nat. Commun.* 2013, *4*, 2422.