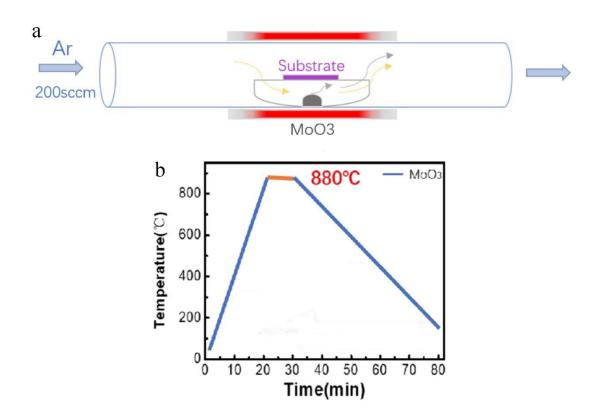
Supporting Information

Chemical Vapor Deposition of Clean and Pure MoS₂ Crystals by Inhibition of MoO_{3-x} Intermediates

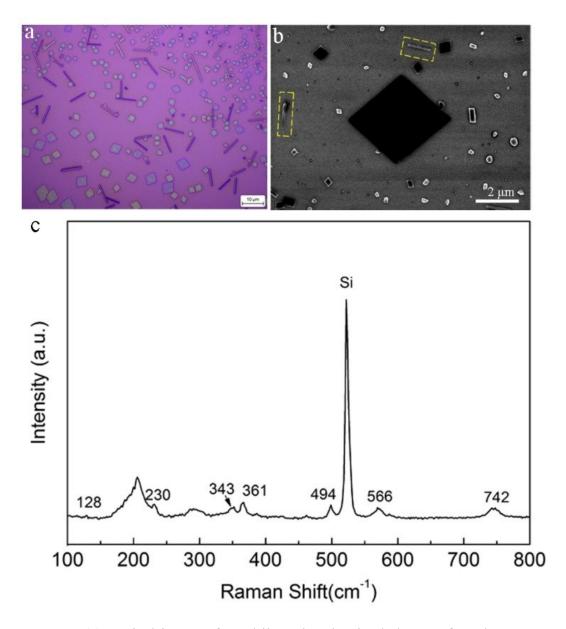
Ran Guan[†], Junxi Duan^{*, §}, Aiheng Yuan[†], Zhoufan Wang[†], Shuai Yang[†], Luoqiao Han[†], Bo Zhang[†], Dejun Li[†], and Birong Luo^{*, †}

[†]College of Physics and Materials Science, Tianjin Normal University, 300387

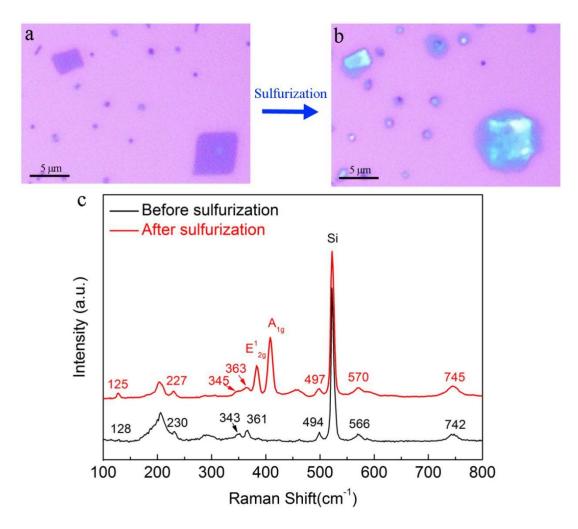
Tianjin, P. R. China.


[§]School of Physics, Bejing Institute of Technology, 100081 Beijing, P. R. China.

* Corresponding Author


E-mail: bluo@tjnu.edu.cn; 6120170107@bit.edu.cn

Sample No.	Heating rate of S	Raman peaks for MoS ₂ (cm ⁻¹)	$\begin{array}{c} A_{1g}-E^{1}{}_{2g}\\ (\Delta k)\end{array}$	Raman peaks for MoO ₂ and/or MoOS ₂ (cm ⁻¹)
	(°C/min)		(cm^{-1})	
1	1	E ¹ _{2g} : 381	27	128, 204, 230, 344, 361, 494,
		A1g: 408		566, 741
2	5	E ¹ _{2g} : 382 A _{1g} : 405	23	124, 204, 227, 494, 566, 742
3	8	E ¹ _{2g} : 381 A _{1g} : 402	21	


 $\textbf{Table S1}. \ Summary \ of \ Raman \ characterization \ of \ MoS_2 \ and \ MoO_{3-x}/MoS_2 \ composites.$

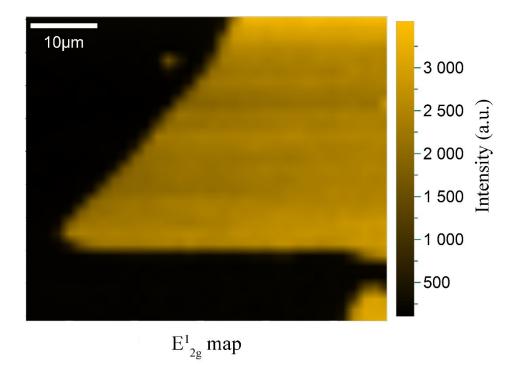

Figure S1. (a) Schematic diagram of the CVD setup for the S-free growth which has only high temperature zone. (b) Temperature ramping processes of the MoO₃ precursor as a function of time.

Figure S2. (a) Optical image of quadrilateral and striped shapes of products grown without S precursor. (b) Enlarged SEM image of quadrilateral and striped shapes of products grown without S precursor. (d) Raman spectra of a typical quadrilateral product grown without S precursor, showing obvious Raman characteristics of MoO₂.

Figure S3. (a) Optical image of quadrilateral CVD products grown before S sulfurization and (b) after sulfurization. (c) The corresponding Raman spectra of quadrilateral CVD products grown before sulfurization and after sulfurization.

Figure S4. The E_{2g}^1 intensity Raman map corresponding to the corner area of the clean and pure MoS₂ grain shown in the up right of Figure 4a.

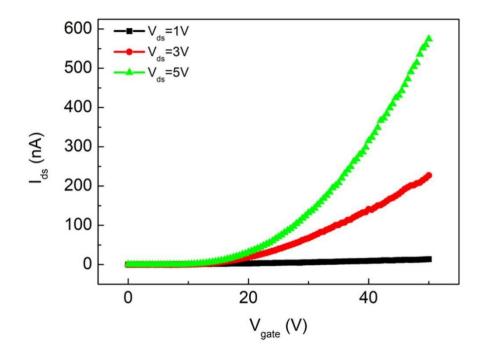


Figure S5. Transfer characteristics curves (I_{ds} - V_{gate}) of the FET device based on clean and pure MoS₂ at 1, 3, and 5V S-D voltage, respectively.