Electronic Supplementary Information

Realization of Red Plasmon Shifts by the Selective Etching of Ag Nanorods

Xingzhong Zhu,*a Juan Xu,a Qinru Yun, Changshun Wang, Qifeng Ruan, and Caixia Kan*a, C

^{*a*} College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: cxkan@nuaa.edu.cn; xzzhu@nuaa.edu.cn

^b Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore

^c Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing 210016, China

Supplementary figures

Fig. S1 (a) Extinction spectrum and (b) TEM image of Au NBPs with average waist width of 28 ± 1 nm and length of 96 ± 3 nm.

Fig. S2 (a) Extinction spectrum and (b) TEM image of the supernatant separated from the product.

Fig. S3 Variation of the longitudinal dipolar plasmon wavelength as a function of the model.

Fig. S4 Simulated transverse plasmon spectra for the etching process. The models 1–7 are shown in Fig. 4a.

Fig. S5 (a-c) TEM images of the Ag nanorod samples 2, 3, and 4, respectively.

Supplementary table

Table S1. The diameters and lengths of the Ag nanorods and the corresponding Ag nanobones.

	Diameter (nm)	Length (nm)		Diameter (nm)	Length (nm)
Ag nanorod-2	136 ± 5	30 ± 1	Ag nanobone-2	133 ± 5	30 ± 1
Ag nanorod-3	167 ± 3	30 ± 1	Ag nanobone-3	167 ± 8	32 ± 1
Ag nanorod-4	258 ± 5	30 ± 1	Ag nanobone-4	256 ± 10	31 ± 1