Supporting Information

N-Arylated Peptide: Troponyl Residue Influences The Structure and Conformation of *N*-Troponylated *di-/tri*-Peptides

Bibhuti Bhusana Palai and Nagendra K. Sharma*

School of chemical Sciences, National Institute of Science Education and Research (NISER)

Jatani-752050, Odisha, India

Phone: +91-674-2304130, Fax: +91-674-2302436

Email: nagendra@niser.ac.in

Table of Contents

1.	Experimental Procedure	S3
2.	Analytical data	S4
3.	NMR (¹ H/ ¹³ C) and HRMS spectra of Tr-Gly-Gly-OMe (2a)	S13
4.	NMR (¹ H/ ¹³ C) and HRMS spectra of Tr-Gly-Aal-OMe (2b)	S15
5.	NMR (¹ H/ ¹³ C) and HRMS spectra of Tr-Ala-Gly-OMe (2 c)	S17
6.	NMR (¹ H/ ¹³ C) and HRMS spectra of Tr-val-Gly-OMe (2d)	S19
7.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-val- β -Ala-OMe (2e)	S21
8.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-val- β -Ala-OMe (2f)	S23
9.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Leu- β -Ala-OMe (2g)	S25
11.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Ala- β -Ala-OMe (2h)	S27
10.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Ile- β -Ala-OMe (2i)	S29
11.	NMR (¹ H/ ¹³ C) and HRMS spectra of Tr-Phe-Gly-OMe (2j)	S31
12.	NMR (¹ H/ ¹³ C) and HRMS spectra of Tr-Pro-Val-OMe (2k)	S33
13.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr- β -Ala-Pro-OMe (21)	S35
14.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Gly- β -Ala-Gly-OMe (3a)	S37
15.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Ala- β -Ala-OMe (3b)	S39
16.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Val- β -Ala-Val-OMe (3c)	S41
17.	NMR (1H/13C) and HRMS spectra of Tr-Leu-β-Ala-Leu-OMe(3d)	S43
19.	NMR (¹ H/ ¹³ C) and HRMS spectra of Tr-Ilu-β-Ala-Ilu-OMe(3e)	S45
20.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Boc-Gly- β -Ala-Gly-OMe (4a)	S47
21.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Boc-Ala- β -Ala-Ala-OMe(4b)	S49
22.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Boc-Val- β -Ala-Val-OMe (4c)	S51
23.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Boc-Leu- β -Ala-Leu-OMe (4d)	S53
24.	NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Boc-Ile- β -Ala-Ile-OMe (4e)	S55

25.	¹ H- ¹ H COSY and NOESY 2D NMR spectrum of dipeptide (2a)	. S57
26.	¹ H- ¹ H COSY and NOESY 2D NMR spectrum of dipeptide (2b)	. S59
27.	¹ H- ¹ H COSY and NOESY 2D NMR spectrum of dipeptide (2c)	.S61
28.	¹ H- ¹ H COSY and NOESY 2D NMR spectrum of dipeptide (2e)	. S63
29.	¹ H- ¹ H COSY and NOESY 2D NMR spectrum of dipeptide (2j)	. S65
19.	¹ H- ¹ H COSY and NOESY 2D NMR spectrum of tripeptide (3d)	. S67
20.	¹ H- ¹ H COSY and NOESY 2D NMR spectrum of tripeptide (3e)	. S69
21.	DMSO-d6 titration experiments by ¹ H-NMR of peptides in CDCl ₃	.S71
22.	Crystal Structure determination:	.S81
23.	Circular Dichroism (CD) Spectra.	. S84
24.	References	. S86

1. Experimental Procedure

Material and Instrumentation: All required chemical materials were obtained from commercial and used without purification. Anhydrous DMF was freshly prepared by distilling over calcium hydride. The reaction was monitored by thin-layer chromatography (TLC), purification by Column chromatography (230-400/100-200 mesh silica). Mass spectra were recorded by Bruker MicrOTOF-Q II Spectrometer. NMR spectra were recorded on Bruker AV-700MHz and Bruker AV-400 (¹H:400MHz ,¹³C:100.6 MHz),¹H and ¹³C-NMR chemical shift were recorded in ppm downfield from tetramethylsilane, splitting patterns are abbreviated as: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; dq, doublet of quartet; m, multiple. CD experiment were performed on JASCO-J 1500 all CD experiment were performed at 20°C.All CD spectra recorded two scans averaged, CD spectra recorded from 310-190 nm.

Syntheses of Troponyl monomer: A solution of 2-tosyloxy tropone (1.00g, 3.61 mmol) in ethanol (50mL), was added in neutralized amino methyl ester (1.2mg,7.23mmol) and refluxed. The reaction was monitored by using thin layer chromatography and found the completion of reactions after 36 hours. After that cooling the reaction mixture at room temperature and concentrated under reduced presser. The reaction mixture was dissolved in DCM(50mL) and washed with water(50ml) three times and then brine(50mL) solution one time using the separating flask. The organic layer was kept Na₂SO4 for 20 minutes and then concentrated under vacuum. The concentrated crude residue was purified by the column chromatography method. The product was purified by using solvent 30% ethyl acetate in hexane¹; the N-troponyl aminomethyl ester was dissolved in EtOH and THF (1:1), to this reaction mixture 2 eq. of NaOH was dissolved in little amont of disstiled water was added and allow to stirring room temperature. The reaction mixture was monitered by TLC, after 15min. reaction was

completed .The solvent was removed under the reduced pressure and the crude product 1N HCl was added and extracted twice EtOAC. The organic layers were combined together, dried over Na₂SO₄ and concentrated under low pressure to afford the pure product as yellow gelatinous liquid. This Troponyl momnomer acid was futher used for peptide synthesis².

General procedure for peptide synthesis: L-amino methyl ester (1.2 eq) was neutralized with Et₃N and to the reaction mixture of troponyl monomer amino acid (1.0 eq.) in anhydrous DMF (10 ml) with NMM (3.0 eq.), HOAT (1.3 eq.), and EDC-HCL (1.3 eq.) and then allow to stir overnight. After complication of reaction, the reaction mixture was concentrated under reduced pressure. Concentrated reaction mixture was extracted three times with methylene chloride. The organic layer was combined dried over saturated sodium bicarbonate. The washed organic layer was combined dried over saturated under reduced pressure and loaded silica gel column purification to obtained desired product. The obtained product was characterised by ¹H -/¹³C-NMR and ESI-ToF-HRMS mass techniques. The characterization of all synthesized hybrid peptide data is provided in bellow.

2. Analytical data

methyl-(2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)acetamido)acetate (**2a**). (tr-Gly-Gly-OMe) The Pure product was obtained as yellowish solid (60 mg, 80% yield,) ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.35 – 7.16 (m, 4H), 6.92 (s, 1H), 6.81 (t, *J* = 9.5 Hz, 1H), 6.54 (d, *J* = 10.2 Hz, 1H), 4.12 (d, *J* = 6.3 Hz, 2H), 4.06 (d, *J* = 5.5 Hz, 2H), 3.71 (s, 3H), 3.49 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.34, 169.77, 168.64, 154.90, 137.90, 136.28, 130.75, 124.64, 110.24, 52.42, 47.04, 41.00. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₂H₁₄N₂O₄ 273.0846, found 273.0852.

methyl-(2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)acetamido)propanoate (2b). (tr-Gly-ala-OMe) The Pure product was obtained as light-yellow solid (66 mg, 74% yield) ¹H NMR (400

MHz, CDCl₃) δ 7.68 (t, *J* = 5.7 Hz, 1H), 7.33 – 7.08 (m, 4H), 6.78 (t, *J* = 9.5 Hz, 1H), 6.53 (d, *J* = 10.2 Hz, 1H), 4.63 (p, *J* = 7.3 Hz, 1H), 4.10 (d, *J* = 6.2 Hz, 2H), 3.69 (s, 3H), 1.37 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.23, 172.88, 167.99, 155.04, 137.84, 136.29, 130.50, 124.40, 110.20, 52.48, 48.05, 47.06, 29.69, 17.92. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₁₃H₁₆N₂O₄ 265.1183, found 265.1210.

methyl-(2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)propanamido)acetate (**2c**). (tr-ala-Gly-OMe) The Pure product was obtained as light red Viscous liquid (86 mg, 63% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 6.5, 5.1 Hz, 1H), 7.27 – 7.15 (m, 3H), 7.09 (s, 1H), 6.80 (t, J = 9.5 Hz, 1H), 6.53 (d, J = 10.2 Hz, 1H), 4.13 – 4.04 (m, 1H), 4.01 (dd, J = 5.8, 2.3 Hz, 2H), 3.70 (s, 3H), 1.68 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.20, 172.69, 169.78, 154.24, 137.91, 136.44, 130.68, 124.64, 110.98, 77.36, 77.04, 76.72, 53.99, 52.33, 40.98, 19.14. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₃H₁₆N₂O₄ 287.1002, found 287.1026.

methyl-(3-methyl-2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)butanamido)acetate (2d). (*tr-Val-Gly-OMe*) The Pure product was obtained as yellowish solid (200 mg, 70% yield,) ¹H NMR (700 MHz, CDCl₃) δ 7.48 – 7.44 (m, 1H), 7.44 – 7.36 (m, 1H), 7.29 – 7.20 (m, 3H), 7.15 – 7.07 (m, 1H), 6.80 (dd, *J* = 20.6, 11.1 Hz, 1H), 6.57 (d, *J* = 10.3 Hz, 1H), 4.59 (s, 1H), 4.09 (dd, *J* = 17.9, 6.0 Hz, 1H), 3.96 (dd, *J* = 17.9, 5.7 Hz, 1H), 3.87 (t, *J* = 5.7 Hz, 1H), 3.69 (s, 3H), 2.53 – 2.48 (m, 1H), 1.12 (dd, *J* = 30.4, 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.01, 171.43, 169.78, 155.00, 137.95, 136.68, 130.04, 126.74, 124.53, 111.08, 63.79, 52.26, 40.98, 31.26, 19.60, 17.87. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₁₅H₂₀N₂O₄ 293.1496, found 293.1515.

methyl-(3-methyl-2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)butanamido)propanoate (2*e*). (*tr-Val-β-ala-OMe*) The Pure product was obtained as light red Viscous liquid (551 mg, 62% yield,) ¹H NMR (700 MHz, CDCl3) δ 7.44 (d, J = 6.3 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.20 – 7.16 (m, 1H), 7.13-7.10 (m, 2H, 6.75 (q, J = 9.5 Hz, 1H), 6.45 (d, J = 10.3 Hz, 1H), 3.78 (t, J = 6.0 Hz, 1H), 3.54 – 3.45 (m, 5H), 2.53 – 2.47 (m, 2H), 2.47 – 2.38 (m, 1H), 1.11 – 1.05 (m, 6H). ¹³C NMR (176 MHz, CDC13) δ 176.89, 172.17, 170.88, 154.95, 137.62, 136.46, 129.69, 123.79, 110.15, 63.97, 51.60, 35.22, 33.85, 31.11, 19.58, 18.24. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₁₆H₂₂N₂O₄ 307.1652, found 307.1674.

methyl-(2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)acetamido)propanoate (**2f**). (tr-Gly- β ala-OMe) The Pure product was obtained as light-yellow solid (160 mg, 95% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 2H), 7.14 (d, *J* = 11.6 Hz, 1H), 6.82 (t, *J* = 9.5 Hz, 1H), 6.60 (d, *J* = 10.4 Hz, 1H), 4.14 (s, 2H), 4.03 (s, 2H), 3.82 (s, 2H), 3.71 (d, *J* = 2.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.03, 170.11, 169.23, 155.12, 150.47, 138.02, 136.75, 129.85, 128.86, 124.36, 120.46, 110.63, 76.83, 52.23, 46.30, 40.84. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₁₃H₁₆N₂O₄ 265.1183, found 265.1196.

methyl-(4-methyl-2-((7-oxocyclohepta-1,3,5-trien-1yl)amino)pentanamido)propanoate (2g). (*tr-leu-β-ala-OMe*) The Pure product was obtained as light yellow Viscous liquid (392 mg, 62% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 1H), 7.29 (d, *J* = 4.7 Hz, 1H), 7.27 – 7.18 (m, 3H), 6.88 – 6.76 (m, 2H), 6.45 (d, *J* = 10.2 Hz, 1H), 3.99 – 3.95 (m, 1H), 3.54 – 3.44 (m, 5H), 2.49 (t, *J* = 6.1 Hz, 2H), 1.96 – 1.78 (m, 3H), 1.01 (d, *J* = 6.0 Hz, 1H), 0.91 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 177.32, 172.30, 172.01, 154.53, 137.86, 136.36, 130.63, 124.35, 110.17, 57.14, 51.79, 42.13, 35.07, 25.24, 23.14, 21.52. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₁₇H₂₄N₂O₄ 321.1809, found 321.1820.

methyl-(2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)propanamido)propanoate (2*h*). (*Tr-Ala-* β -*Ala-OMe*) The Pure product was obtained as light red Viscous liquid (200 mg, 70% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 1H), 7.24 – 7.16 (m, 3H), 6.84 (s, 1H), 6.78 (t, *J* = 9.5 Hz, 1H), 6.40 (d, *J* = 10.2 Hz, 1H), 4.05-3.99 (m, 1H), 3.56 – 3.42 (m, 5H), 2.49 (t, *J* = 6.1 Hz, 2H), 1.64 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.20, 172.18, 171.97, 154.12, 137.72, 136.12, 130.74, 124.27, 110.17, 77.37, 77.05, 76.74, 54.07, 51.70, 34.94, 33.70, 29.70, 19.11. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₄H₁₈N₂O₄ 301.1159, found 301.1184.

methyl-((2S,3R)-3-methyl-2-((7-oxocyclohepta-1,3,5-trien-1-

yl)amino)pentanamido)propanoate (2*i*). (*tr-Ile-β-ala-Ome*) The Pure product was obtained as light red Viscous liquid (86 mg, 60% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 20.5 Hz, 1H), 7.29 – 7.09 (m, 4H), 6.74 (t, J = 8.9 Hz, 1H), 6.46 (d, J = 9.4 Hz, 1H), 3.83 (s, 1H), 3.50 (s, 5H), 2.49 (s, 2H), 2.15 (s, 1H), 1.61 (s, 1H), 1.39 (ddd, J = 20.4, 13.4, 6.5 Hz, 1H), 1.08 – 0.83 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 172.15, 170.65, 154.87, 137.64, 136.31, 130.02, 123.93, 110.08, 77.41, 77.10, 76.78, 63.16, 51.62, 37.60, 35.06, 33.77, 25.15, 15.98, 11.51. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₇H₂₄N₂O₄ 343.1628, found 343.1603,

methyl-(2-((7-*oxocyclohepta-1,3,5-trien-1-yl)amino*)-3-*phenylpropanamido*)*propanoate* (2*j*). (*tr-Phe-β-ala-OMe*) The Pure product was obtained as light-yellow solid (150 mg, 78% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 4.2 Hz, 1H), 7.36 – 7.21 (m, 6H), 7.15 (dd, J = 20.5, 10.8 Hz, 1H), 6.75 (dd, J = 20.1, 10.3 Hz, 2H), 6.40 (d, J = 10.2 Hz, 1H), 4.20 (d, J = 5.3 Hz, 1H), 3.56 – 3.38 (m, 5H), 3.27 (dt, J = 13.9, 10.3 Hz, 2H), 2.51 – 2.37 (m, 2H), 2.07 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.16, 172.04, 170.48, 154.19, 137.63, 136.05, 135.85, 130.50, 129.22, 128.92, 127.38, 124.19, 110.10, 59.27, 51.67, 38.68, 34.96, 33.66. HRMS (ESI-TOF) m/z:[M+Na]⁺ Calcd. For C₂₀H₂₂N₂O₄ 377.1472, found 377.1476.

methyl-methyl-2-((-5-(7-oxocyclohepta-1,3,5-trien-1-yl)pyrrolidine-2-

carboxamido)*butanoate* (2*k*). (*tr-Pro-val-OMe*) The Pure product was obtained as light red Viscous liquid (300 mg, 58% yield,) ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 6.99 (m, 2H), 6.87 (d, *J* = 11.7 Hz, 1H), 6.70 (d, *J* = 8.5 Hz, 1H), 6.55 (t, *J* = 9.2 Hz, 1H), 6.47 (d, *J* = 10.5 Hz,

1H), 5.21 (d, J = 3.5 Hz, 1H), 4.50 – 4.43 (m, 1H), 3.75 (dd, J = 13.9, 8.4 Hz, 1H), 3.66 (s, 3H), 3.45 (dd, J = 16.7, 6.9 Hz, 1H), 2.29 – 1.90 (m, 6H), 0.91 (dd, J = 10.6, 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.30, 172.40, 172.09, 155.51, 135.69, 134.35, 132.48, 123.03, 113.97, 77.61, 77.29, 76.97, 63.54, 57.03, 51.94, 51.70, 31.35, 31.08, 23.23, 18.93, 17.76. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₈H₂₄N₂O₄ 355.1629, found 355.1627.

methyl-(3-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)propanoyl)pyrrolidine-2-carboxylate

(21). (*tr-β-ala-Pro-OMe*) The Pure product was obtained as light red Viscous liquid (80 mg, 58% yield,) ¹H NMR (700 MHz, CDCl₃) δ 7.33 (s, 1H), 7.27 – 7.24 (m, 1H), 7.22 (t, *J* = 9.5 Hz, 1H), 7.13 (d, *J* = 11.5 Hz, 1H), 6.67 (t, *J* = 9.5 Hz, 1H), 6.61 (d, *J* = 10.4 Hz, 1H), 4.49 (dd, *J* = 8.5, 3.8 Hz, 1H), 3.77 – 3.71 (m, 4H), 3.71-3.69 (m, 1H), 3.65 – 3.60 (m, 1H), 3.49-3.46 (m, 1H), 2.79 – 2.66 (m, 2H), 2.19-2.16 (m, 1H), 2.11 – 2.03 (m, 1H), 2.03 – 1.94 (m, 2H), 1.82 (s, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 176.84, 172.76, 169.13, 155.46, 137.42, 136.42, 128.86, 122.53, 108.77, 77.32, 77.14, 76.96, 58.81, 52.42, 47.13, 38.38, 33.39, 29.28, 24.81. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₁₈H₂₄N₂O₄ 305.1496, found 305.1519.

methyl-(3-(2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)acetamido)propanamido)acetate (*3a*). (*tr-Gly-β-ala-Gly-OMe*) The Pure product was obtained as yellowish solid (155 mg, 75% yield,) ¹H NMR (700 MHz, MeOD) δ 7.41-7.44 (m, 4H), 7.14 (d, J = 11.5 Hz, 1H), 6.84 (t, J = 9.4 Hz, 1H), 6.69 (d, J = 10.3 Hz, 1H), 4.13 (s, 2H), 3.99 (d, J = 9.4 Hz, 1H), 3.93 – 3.88 (m, 3H), 3.81 (s, 2H), 3.74 – 3.68 (m, 4H), 3.54 (t, J = 6.4 Hz, 2H), 2.50 (t, J = 6.4 Hz, 2H). ¹³C NMR (176 MHz, MeOD) δ 174.27, 172.00, 170.53, 169.06, 157.02, 149.86, 140.43, 139.38, 138.58, 136.41, 129.81, 129.30, 121.51, 46.64, 46.61, 46.57, 41.91, 41.87, 41.84, 41.03, 37.02, 36.29. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₅H₁₉N₃O₅ 344.1217, found 34401195.

methyl-(3-(2-((7-oxocyclohepta-1,3,5-trien-1-

yl)amino)propanamido)propanamido)propanoate (3b). (tr-Ala- β -ala-Ala-OMe) The Pure

product was obtained as light red Viscous liquid (290 mg, 56% yield) ¹H NMR (700 MHz, CDCl₃) δ 7.38 – 7.23 (m, 3H), 7.19 (t, *J* = 10.1 Hz, 1H), 7.13 (d, *J* = 11.6 Hz, 1H), 6.85 – 6.69 (m, 2H), 6.45 (dd, *J* = 19.6, 10.3 Hz, 1H), 4.44 (td, *J* = 7.2, 3.3 Hz, 1H), 4.08 – 4.04 (m, 1H), 3.72 (s, 3H), 3.63 – 3.41 (m, 2H), 2.43 (dtd, *J* = 21.5, 14.9, 8.6 Hz, 2H), 1.61 (d, *J* = 7.0 Hz, 3H), 1.43 – 1.22 (m, 4H). ¹³C NMR (176 MHz, CDCl₃) δ 176.95, 173.52, 172.38, 171.04, 154.32, 137.70, 136.39, 130.17, 123.96, 110.20, 110.11, 53.72, 52.53, 48.10, 35.77, 18.95, 17.87. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₇H₂₃N₃O₅ 372.1530, found 372.1518.

methyl-methyl-2-(3-(-3-methyl-2-((7-oxocyclohepta-1,3,5-trien-1-

yl)amino)butanamido)propanamido)butanoate (**3c**). (tr-Val- β -ala-Val-OMe) The Pure product was obtained as light red Viscous liquid (250 mg, 56% yield) ¹H NMR (700 MHz, CDCl₃) δ 7.43 (dd, *J* = 14.0, 6.5 Hz, 1H), 7.30 (dd, *J* = 19.6, 9.1 Hz, 1H), 7.24 – 7.17 (m, 2H), 7.06 (s, 5H), 6.75 (t, *J* = 9.5 Hz, 1H), 6.48 (t, *J* = 11.4 Hz, 1H), 6.25 (d, *J* = 8.0 Hz, 1H), 4.45 (dd, *J* = 8.1, 5.3 Hz, 1H), 3.79 (t, *J* = 5.3 Hz, 1H), 3.73 (d, *J* = 6.7 Hz, 3H), 3.61 (dq, *J* = 12.3, 6.0 Hz, 1H), 3.48 (td, *J* = 12.4, 5.9 Hz, 1H), 2.50 – 2.37 (m, 3H), 2.08 (mz, 1H), 1.06 (dd, *J* = 14.7, 6.8 Hz, 6H), 0.92 – 0.80 (m, 6H). ¹³C NMR (176 MHz, CDCl₃) δ 176.99, 172.38, 171.10, 170.87, 154.91, 137.65, 136.25, 129.99, 123.94, 110.11, 77.16, 76.98, 76.80, 63.72, 57.13, 52.17, 35.57, 35.53, 31.18, 30.91, 19.49, 18.86, 18.08, 17.77. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₂₁H₃₁N₃O₅ 406.2336, found 406.2340.

methyl-methyl-2-(3-((-4-methyl-2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)pentanamido) propanamido) pentanoate (3d). (tr-Leu-β-ala-Leu-OMe) The Pure product was obtained as light red Viscous liquid (230 mg, 68% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.10 (m, 5H), 6.74 (t, J = 9.4 Hz, 1H), 6.55 – 6.34 (m, 2H), 4.51 (s, 1H), 3.99 (d, J = 5.7 Hz, 1H), 3.73 (s, 3H), 3.52 (dddd, J = 35.2, 27.0, 13.2, 6.1 Hz, 2H), 2.43 (dt, J = 32.7, 11.3 Hz, 2H), 1.83 (dt, J = 11.5, 8.0 Hz, 3H), 1.61 (d, J = 6.2 Hz, 2H), 1.54 – 1.38 (m, 1H), 1.36 – 1.21 (m, 1H), 1.02 – 0.83 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 177.07, 173.57, 172.25, 171.06, 154.62, 137.61, 136.30, 136.27, 130.22, 123.91, 109.90, 57.02, 52.35, 50.86, 41.13, 35.75, 25.09, 23.01, 22.76, 21.84, 21.48. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₂₃H₃₅N₃O₅ 456.2469, found 456.2441.

methyl-methyl-2-(3-((-3-methyl-2-((7-oxocyclohepta-1,3,5-trien-1-yl)amino)pentanamido) propanamido)pentanoate (*3e*). (*tr-Ile-β-ala-Ile-OMe*) The Pure product was obtained as light red Viscous liquid (340 mg, 81% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 6.5 Hz, 1H), 7.36 – 7.09 (m, 4H), 6.77 – 6.68 (m, 1H), 6.52 (dd, J = 20.0, 8.8 Hz, 2H), 4.54 – 4.45 (m, 1H), 3.85 (t, J = 6.0 Hz, 1H), 3.72 (s, 3H), 3.55 (dtd, J = 27.4, 13.3, 6.5 Hz, 2H), 2.55 – 2.38 (m, 2H), 2.10 (dd, J = 32.4, 6.0 Hz, 1H), 1.81 (s, 1H), 1.62 (d, J = 6.4 Hz, 1H), 1.47 – 1.07 (m, 3H), 1.06 – 0.79 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 176.95, 172.43, 171.05, 170.84, 154.93, 137.55, 136.27, 129.85, 123.68, 109.92, 62.96, 56.46, 52.12, 37.70, 37.60, 35.63, 25.26, 25.19, 15.87, 15.45, 11.55, 11.47. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₂₃H₃₅N₃O₅ 456.2469, found 456.2441.

methyl,2-*dimethyl*-4,7,11-*trioxo*-3-*oxa*-5,8,12-*triazatetradecan*-14-*oate* (**4a**). (Boc-Gly-β-ala-Gly-OMe) The pure product was obtained as white solid (300 mg, 91% yield) ¹H NMR (700 MHz, CDCl₃) δ 6.98 (d, J = 70.7 Hz, 2H), 5.45 (s, 1H), 4.00 (d, J = 5.8 Hz, 2H), 3.74 (d, J = 7.4 Hz, 5H), 3.56 (dd, J = 11.9, 6.1 Hz, 2H), 2.49 – 2.44 (m, 2H), 2.06 (s, 2H), 1.42 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 170.95, 170.10, 156.19, 80.22, 77.35, 77.03, 76.71, 52.44, 44.39, 41.22, 35.97, 35.74, 28.30. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₃H₂₃N₃O₆ 340.1479, found 340.1476.

methyl-tetramethyl-4,7,11-*trioxo-3-oxa-5*,8,12-*triazatetradecan-14-oate* (**4b**). (Boc-Al- β -ala-Ala-OMe) The pure product was obtained as white solid (140 mg, 52% yield) ¹H NMR (700 MHz, CDCl₃) δ 7.20 (d, J = 44.7 Hz, 2H), 5.19 (s, 1H), 4.56 (m, 1H), 4.01 (t, J = 7.1 Hz, 1H), 3.85 (d, J = 5.3 Hz, 2H), 3.75 (s, 3H), 3.20 (s, 1H), 2.44 – 2.27 (m, 2H), 2.04 (d, J = 14.2 Hz,

1H), 1.41 (s, 2H), 1.41 (s, 9H), 1.33 (d, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 174.81, 173.52, 172.38, 155.76, 80.12, 52.59, 50.89, 48.37, 36.73, 28.29, 17.88, 16.96. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₁₅H₂₇N₃O₆ 368.1792, found 368.1795.

methyl-diisopropyl-2,2-dimethyl-4,7,11-trioxo-3-oxa-5,8,12-triazatetradecan-14-oate (4*c*). (*Boc-Val-β-ala-Val-OMe*) The pure product was obtained as white solid (250 mg, 89% yield) ¹H NMR (700 MHz, CDCl₃) δ 7.46 – 7.38 (m, 1H), 4.42 (d, J = 5.7 Hz, 1H), 3.84 (d, J = 5.5 Hz, 1H), 3.76 (d, J = 6.4 Hz, 3H), 3.72 – 3.65 (m, 1H), 3.36 (t, J = 18.2 Hz, 3H), 2.46-2.43 (m, 2H), 2.18 – 2.16 (m, 1H), 2.07-2.05 (m, 1H), 1.47 – 1.42 (m, 10H), 0.99 – 0.88 (m, 12H). ¹³C NMR (176 MHz, CDCl₃) δ 173.29, 172.78, 156.31, 150.68, 129.14, 120.55, 80.01, 60.26, 58.00, 52.24, 36.11, 30.31, 29.67, 28.28, 19.23, 19.04, 18.12, 17.89. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. For C₁₉H₃₅N₃O₆ 402.2599, found 402.2565.

methyl-diisobutyl-2,2-dimethyl-4,7,11-trioxo-3-oxa-5,8,12-triazatetradecan-14-oate(**4d**). (*Boc-Leu-β-ala-Leu-OMe*) The pure product was obtained as white solid (150 mg, 65% yield) ¹H NMR (700 MHz, CDCl₃) δ 7.50 (d, J = 6.5 Hz, 1H), 7.28 – 7.21 (m, 1H), 5.05 (d, J = 7.4 Hz, 1H), 4.60 (td, J = 10.8, 4.4 Hz, 1H), 4.02 – 3.91 (m, 2H), 3.73 (s, 3H), 3.09 (td, J = 11.4, 3.1 Hz, 1H), 2.36 – 2.24 (m, 2H), 1.70 – 1.57 (m, 4H), 1.40 (s, 10H), 0.98 – 0.88 (m, 12H). ¹³C NMR (176 MHz, CDCl₃) δ 175.38, 173.57, 173.25, 156.27, 139.28, 114.08, 77.24,54.05, 52.52, 51.39, 40.80, 39.51, 37.48, 36.84, 29.70, 28.29, 24.93, 24.70, 22.98, 22.57, 22.26, 21.13. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₂₁H₃₉N₃O₆ 452.2731, found 452.2686.

methyl-sec-butyl)-6-(*sec-butyl*)-2-*methyl*-4,7,11-*trioxo-3-oxa-5*,8,12-*triazatetradecan-14-oate* (4e). (*Boc-lle-β-ala-lle-OMe*) The pure product was obtained as white solid (250 mg, 91% yield) ¹H NMR (700 MHz, CDCl₃) δ 6.59 (s, 1H), 5.11 (s, 1H), 3.94 – 3.88 (m, 1H), 3.70 (s, 3H), 3.60 – 3.46 (m, 2H), 2.56 (t, J = 6.1 Hz, 2H), 1.85 (s, 1H), 1.44 (s, 10H), 1.14 – 1.06 (m, 1H), 0.90 (t, J = 7.6 Hz, 6H). ¹³C NMR (176 MHz, CDCl₃) δ 173.52, 172.43, 172.11, 156.09,

S11

79.84, 77.22, 77.04, 76.86, 59.82, 57.07, 52.26, 36.86, 36.62, 36.19, 28.30, 25.32, 25.01, 15.68, 15.61 (d, *J* = 21.6 Hz), 11.42, 11.27. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. For C₂₁H₃₉N₃O₆ 452.2731, found 452.2781.

3. NMR (¹H/¹³C) and HRMS spectra of Tr-Gly-Gly-OMe (**2a**)

Fig. S1: ¹H,¹³C-NMR spectrum of Tr-Gly-Gly -OMe (2a) in CDCl₃

Generic Display Report

Fig. S2. ESI-MS/HRMS spectra of Tr-Gly-Gly -OMe (2a)

4. NMR ($^{1}H/^{13}C$) and HRMS spectra of Tr-Gly-Aal-OMe (**2b**)

Fig. S3: ¹H,¹³C-NMR spectrum of Tr-Gly-Ala -OMe (**2b**) in CDCl₃ (*Impurites)

Fig. S4: ESI-MS/HRMS spectra of Tr-Gly-Ala -OMe (2b)

Fig. S5: Mass spectrum of Tr-Ala-Gly -OMe (2c) in CDCl₃

Fig. S6: ESI-MS/HRMS spectra of Tr-Ala-Gly -OMe (2c)

6. NMR (¹H/¹³C) and HRMS spectra of Tr-val-Gly-OMe (**2d**)

Fig. S7: Mass spectrum of Tr-Ala-Gly -OMe (2d) in CDCl₃

Generic Display Report

Fig. S8: ESI-MS/HRMS spectra of Tr-Val-Gly -OMe (2d)

7. NMR ($^{1}H/^{13}C$) and HRMS spectra of Tr-val- β -Ala-OMe (**2e**)

, . 110 100 f1 (ppm)

.

140 130

Fig. S10: ESI-MS/HRMS spectra of Tr-Val-β-Ala -OMe (2d)

8. NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-val- β -Ala-OMe (**2f**)

Fig. 11: ¹H,¹³C-NMR spectrum of Tr-Gly-β-Ala -OMe (2f) in CDCl₃

Fig. S12: ESI-MS/HRMS spectra of Tr-Gly-β-Ala -OMe (2f)

9. NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Leu- β -Ala-OMe (**2g**)

Fig. S14: ESI-MS/HRMS spectra of Tr-Leu-β-Ala -OMe (2g)

11. NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Ala- β -Ala-OMe (**2h**)

Fig. S15: ¹H, ¹³C-NMR spectrum of Tr-Ala-β-Ala -OMe (**2h**) in CDCl₃

Fig. S16: ESI-MS/HRMS spectra of Tr-Gly-β-Ala -OMe (2h)

10. NMR (${}^{1}\text{H}/{}^{13}\text{C}$) and HRMS spectra of Tr-Ile- β -Ala-OMe (**2i**)

Fig. S18: ESI-MS/HRMS spectra of Tr-Ile-β-Ala -OMe (2i)

11. NMR (¹H/¹³C) and HRMS spectra of Tr-Phe-Gly-OMe (**2j**)

Fig. S20: ESI-MS/HRMS spectra of Tr-Phe-β-Ala -OMe (2j)

12. NMR $({}^{1}\text{H}/{}^{13}\text{C})$ and HRMS spectra of Tr-Pro-Val-OMe (**2k**)

Fig. S22: ESI-MS/HRMS spectra of Tr-Pro-Val -OMe (2k)

13. NMR ($^{1}H/^{13}C$) and HRMS spectra of Tr- β -Ala-Pro-OMe (**2**I)

S35

Fig. S24: ESI-MS/HRMS spectra of Tr-β-Ala-Pro-OMe(2l)

14. NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Tr-Gly- β -Ala-Gly-OMe (**3a**)

Fig. S26: ESI-MS/HRMS spectra of Tr-Gly-β-Ala-Gly-OMe (3a)

15. NMR (¹H/¹³C) and HRMS spectra of Tr-Ala-β-Ala-OMe (**3b**)

Fig. S27: ¹H,¹³C-NMR spectrum of Tr-Ala-β-Ala-Ala-OMe (**3b**) in CDCl₃

Fig. S28: ESI-MS/HRMS spectra of Tr-Ala-β-Ala-Ala-OMe (3b)

Fig. S29: ¹H,¹³C-NMR spectrum of Tr-Val-β-Ala-Val-OMe (3c) in CDCl₃

Generic Display Report

Fig. S30: ESI-MS/HRMS spectra of Tr-Val- β -Ala-Val-OMe (3c)

17. NMR (1H/13C) and HRMS spectra of Tr-Leu-β-Ala-Leu-OMe(3d)

Fig. S31: ¹H,¹³C-NMR spectrum of Tr-Leu-β-Ala-Leu-OMe (**3d**) in CDCl₃

Generic Display Report

Fig. S32: ESI-MS/HRMS spectra of Tr-Leu-β-Ala-Leu-OMe (**3d**)

Fig. S34: ESI-MS/HRMS spectra of Tr-Ile- β -Ala-Ile-OMe (3e)

20. NMR ($^{1}H/^{13}C$) and HRMS spectra of Boc-Gly- β -Ala-Gly-OMe (4a)

Fig. S35: ¹H,¹³C-NMR spectrum of Boc-Gly-β-Ala-Gly-OMe (4a) in CDCl₃

Fig. S36: ESI-MS/HRMS spectra of Boc-Gly-β-Ala-Gly-OMe(4a)

Fig. S38: ESI-MS/HRMS spectra of Boc-Ala-β-Ala-Ala-OMe(4b)

Fig. S39: 1H,13C-NMR spectrum of Boc-Gly-β-Ala-Gly-OMe(4c) in CDCl3

Fig. S40: ESI-MS/HRMS spectra of Boc-Ala- β -Ala-Ala-OMe (4c)

Fig. S41: ¹H,¹³C-NMR spectrum of Boc-Leu-β-Ala-Leu-OMe(4d) in CDCl₃

Fig. S42: ESI-MS/HRMS spectra of Boc-Ala-β-Ala-Ala-OMe(4d)

24. NMR (${}^{1}H/{}^{13}C$) and HRMS spectra of Boc-Ile- β -Ala-Ile-OMe (4e)

Fig. S43: ¹H, ¹³C-NMR spectrum of Boc-Ile-β-Ala-Ile-OMe(4e) in CDCl₃

Fig. S44: ESI-MS/HRMS spectra of Boc-Ala-β-Ala-Ala-OMe(4e)

25. ¹H-¹H COSY and NOESY 2D NMR spectrum of dipeptide (2a)

Fig. S45:¹H-¹H COSY spectra of (2a) in CDCl₃

Fig. S46:¹H-¹H NOESY spectra of (2a) in CDCl₃

26. ¹H-¹H COSY and NOESY 2D NMR spectrum of dipeptide (2b)

Fig. S47:¹H-¹H COSY spectra of (2b) in CDCl₃

Fig. S48:¹H-¹H NOESY spectra of (2b) in CDCl₃

 $Ht_{6} \rightarrow Ht_{7} \rightarrow H$

Fig. 49:¹H-¹H COSY spectra of (2c) in CDCl₃

Fig. S50:¹H-¹H NOESY spectra of (2c) in CDCl₃

Fig. S51:¹H-¹H COSY spectra of (2e) in CDCl₃

Fig. S52:¹H-¹H NOESY spectra of (2e) in CDCl₃

29. ¹H-¹H COSY and NOESY 2D NMR spectrum of dipeptide (2j)

Fig. S53:¹H-¹H COSY spectra of (2j) in CDCl₃

Fig. S54:¹H-¹H NOESY spectra of (2j) in CDCl₃

19. ¹H-¹H COSY and NOESY 2D NMR spectrum of tripeptide (3d)

Fig. S55:¹H-¹H COSY spectra of (3d) in CDCl₃

Fig. S56:¹H-¹H NOESY spectra of (3d) in CDCl₃

Fig. S57:¹H-¹H COSY spectra of (3e) in CDCl₃

Fig. S58:¹H-¹H NOESY spectra of (3e) in CDCl₃

21. DMSO-d6 titration experiments by ¹H-NMR of peptides in CDCl₃

Fig. S59: Experiments by ¹H-NMR of DMSO-d6 titration of (**2c**) CDCl₃ & its expanded spectral region.

uL	0	2	4	6	8	10	12	14	16	18	20
NH1	7.33	7.35	7.39	7.51	7.55	7.63	7.66	7.71	7.79	7.86	7.91
NH ₂	7.05	7.19	7.24	7.28	7.31	7.33	7.36	7.36	7.39	7.40	7.40

(NOE and weak intramolecular Hydrogen bonding)

Fig. S60: DMSO-d6 titration profile of (2c) in CDCl₃

Fig. S61: Experiments by ¹H-NMR of DMSO-d6 titration of (**2e**) CDCl₃ & its expanded spectral region.

(NOE and possible Intramolecular Hydrogen bonding in tr-di-peptide (2e)

uL	0	2	4	6	8	10	12	14	16	18
NH ₁	7.44	7.47	7.47	7.47	7.48	7.48	7.98	7.49	7.49	7.49
NH ₂	7.09	7.09	7.09	7.10	7.10	7.10	7.10	7.11	7.11	7.12

Fig. S62: DMSO-d6 titration profile of (2e) in CDCl₃

Fig. S63: Experiments by ¹H-NMR of DMSO-d6 titration of (**2j**) CDCl₃ & its expanded spectral region.

uL	0	2	4	6	8	10	12	14	16	18	20
NH1	7.41	7.41	7.41	7.42	7.43	7.44	7.46	7.47	7.47	7.47	7.48
NH ₂	6.53	6.53	6.58	6.66	6.72	6.83	6.83	6.93	7.04	7.09	7.13

(NOE and possible Intramolecular Hydrogen bonding in tr-di-peptide (2j)

Fig. S64: DMSO-d6 titration profile of (2j) in CDCl₃

Fig. S65: Experiments by ¹H-NMR of DMSO-d6 titration of (**3d**) CDCl₃ & its expanded spectral region.

uL	0	2	4	6	8	10	12	14	16
NH1	7.30	7.31	7.35	7.38	7.40	7.44	7.49	7.59	7.64
NH ₂	7.28	7.28	7.31	7.31	7.33	7.35	7.38	7.39	7.40
NH3	6.41	6.46	6.48	6.48	6.49	6.49	6.50	6.51	6.52

NOE and Possible Intramolecular Hydrogen Bonding NH-2/NH-3 1ith troponyl carbonyl in 3d

Fig. S66: DMSO-d6 titration profile of (3d) in CDCl₃

Fig. S67: Experiments by ¹H-NMR of DMSO-d6 titration of (**3e**) CDCl₃ & its expanded spectral region.

uL	0	2	4	6	8	10	12	14	16	18	20
NH1	7.42	4.42	7.42	7.42	7.42	7.42	7.42	7.42	7.42	7.42	7.42
NH ₂	6.88	6.88	6.89	6.89	6.90	6.91	6.94	6.97	6.99	7.02	7.02
NH3	6.02	6.03	6.06	6.08	6.09	6.14	6.21	6.30	6.37	6.46	6.66

(NOE and Possible Intramolecular Hydrogen Bonding NH-1/NH-2 1ith troponyl carbonyl in **3e**)

Fig. S68: DMSO-d6 titration profile of (3e) in CDCl₃

22. Crystal Structure determination:

Single crystal of (**2a/2b/2d/2e/2f/j**) were grown by slow diffusion of solution in Dichloromethane into hexane, followed by evaporation under atmospheric condition. The crystal data of all peptide were collected on a Bruker Kappa APEX II CCD diffractometer at 293 K and a Rigaku Oxford diffractometer at 293 K respectively. Selected data collection parameters and other crystallographic results are summarized in SI. The program package SHELXTL¹ and Olex2 was used for structure solution and packing diagram carried out by DIAMOND-3.2 software.

CCDC 1889029-1889034 contain the supplementary crystallographic data for **2a/2b/2d/2e/2f/2j**. These data can be obtained free of charge via <u>https://www.ccdc.cam.ac.uk/data</u>

compounds	(2a)	(2b)	(2d)	(2e)	(2f)	(2 j)
Identification code	CCDC 1889029	CCDC 1889030	CCDC 1889031	CCDC 1889033	CCDC 1889034	CCDC1889032
Empirical formula	$C_{12}H_{14}N_2O_4$	$C_{13}H_{16}N_2O_4$	$C_{15}H_{20}N_2O_4$	$C_{16}H_{22}N_2O_4$	$C_{13}H_{16}N_2O_4$	$C_{21}H_{27}N_5O_4$
Formula weight	250.25	264.28	292.33	306.35	264.28	357.48
Temperature/k	293(2)	296(2)	296(2)	296(2)	293(2)	293(2)
Crystal system	monoclinic	orthorhombic	triclinic	triclinic	monoclinic	triclinic
Space group	P2 ₁ /n	P2 ₁ 2 ₁ 2 ₁	P-1	P-1	P2 ₁ /c	P-1
A/å	13.8569(3)	6.8111(3)	7.8029(5)	8.2453(2)	13.8433(12)	9.5702(7)
B/å	4.87510(10)	7.3881(3)	10.6573(5)	9.1188(3)	11.6707(8)	9.7242(7)
C/å	18.1860(4)	27.5932(10)	10.8703(5)	11.2435(4)	8.3343(7)	11.5579(6)
α/°	90.00	90	115.740(4)	77.692(2)	90.00	72.878(6)
β/°	98.164(2)	90	99.231(3)	86.278(2)	100.376(7)	79.720(6)
γ/°	90.00	90	103.722(4)	86.449(2)	90.00	68.987(7)
Volume/å ³	1216.08(5)	1388.52(10)	754.32(7)	823.19(5)	1324.48(18)	956.37(11)
Z	4	4	2	2	4	2
$\rho_{calc}g/cm^3$	1.367	1.264	1.287	1.236	1.325	1.241
M/mm ⁻¹	0.872	0.095	0.094	0.089	0.828	0.611
F(000)	528.0	560.0	312.0	328.0	560.0	384.0
Crystal size/mm ³	0.29 × 0.28 × 0.24	$0.27 \times 0.25 \times 0.22$	$0.27 \times 0.24 \times 0.20$	0.27 × 0.24 × 0.23	0.3 × 0.27 × 0.08	0.29 × 0.25 × 0.21
Radiation	CuKα (λ = 1.54184)	ΜοΚα (λ = 0.71073)	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)
2θ range for data collection/°	7.52 to 154.58	2.952 to 50.9	4.362 to 51.998	3.712 to 56.702	9.98 to 154.12	8.04 to 99.96
Index ranges	$-14 \le h \le 17, -5$ $\le k \le 5, -22 \le 1 \le$ 23	$-8 \le h \le 8, -7 \le k \le \\ 8, -33 \le l \le 33$	$-9 \le h \le 9, -13 \le k$ $\le 12, -13 \le 1 \le 13$	$ \begin{array}{c} -10 \leq h \leq 11, -12 \\ \leq k \leq 12, -15 \leq 1 \\ \leq 14 \end{array} $	$ \begin{array}{c} -15 \leq h \leq 17, -13 \\ \leq k \leq 14, -10 \leq 1 \\ \leq 10 \end{array} $	$-9 \le h \le 9, -9 \le k$ $\le 9, -11 \le 1 \le 11$
Reflections collected	9626	17437	10451	13278	9030	8659

Table S1: Crystallographic table

Independent	2482 [R _{int} =	2559 [R _{int} =	2967 [R _{int} =	4075 [R _{int} =	2695 [R _{int} =	1971 [R _{int} =
reflections	0.0522, R _{sigma} =	0.0561, R _{sigma} =	0.0686, R _{sigma} =	0.0203, R _{sigma} =	0.0705, R _{sigma} =	0.0847, R _{sigma} =
	0.0409]	0.0396]	0.0723]	0.0198]	0.0726]	0.0770]
Data/restraints/	2482/0/164	2559/0/173	2967/0/190	4075/0/202	2695/0/173	1971/0/237
parameters	2102/0/101	2003/0/1/0	2,01,0,1,0	10,0,0,202	20,0,0,1,0	1, , 1, 0, 20,
Goodness-of-	1.067	1.015	0.969	1.040	1.067	1.188
fit on f ²						
Final r indexes	$R_1 = 0.0420,$	$R_1 = 0.0420, wR_2 =$	$R_1 = 0.0505, wR_2 =$	$R_1 = 0.0437,$	$R_1 = 0.0767,$	$R_1 = 0.0747,$
[i>=2σ (i)]	$wR_2 = 0.1202$	0.0923	0.1080	$wR_2 = 0.1170$	$wR_2 = 0.2220$	$wR_2 = 0.2141$
Final r indexes	$R_1 = 0.0480,$	$R_1 = 0.0808, wR_2 =$	$R_1 = 0.0993, wR_2 =$	$R_1 = 0.0580,$	$R_1 = 0.1142,$	$R_1 = 0.0928,$
[all data]	$wR_2 = 0.1240$	0.1083	0.1226	$wR_2 = 0.1289$	$wR_2 = 0.2996$	$wR_2 = 0.2237$
Largest diff.						
Peak/hole / e å-	0.17/-0.18	0.17/-0.14	0.18/-0.22	0.20/-0.16	0.24/-0.41	0.33/-0.22
3						

23. Circular Dichroism (CD) Spectra.

CD experiment were recorded in degassed HPLC grade solvent CH₃OH And CH₃CN at 20 ⁰C. CD spectra recorded from 310-190 nm with peptide concentrations of 0.1 mM.CD data is collected with following parameters, Data pitch 2 nm, DIT 2 sec, Bandwidth 2nm, Scanning speed 100 nm/min.

Fig. S69: CD spectra of peptide (2a-2l) in Methanol (MeOH)

Fig. S70: CD spectra of *tri*-peptide (3a-3e) in Acetonitrile (MeOH)

Fig. S71: CD spectra of peptide (4a-4e) in Methanol (MeOH)

24. References

- 1. synthesis and photophysical studies of difluoro boron complexes from 2aminotropone scaffolds through N, O-chelation. *Org. Biomol. Chem.* **2019**, *17* (26), 6497-6505.
- 2. Instability of Amide Bond Comprising the 2-Aminotropone Moiety: Cleavable under Mild Acidic Conditions. *Org. Lett.* **2015**, *17* (16), 3948-3951