Supplementary Information

"Supramolecular Cu(II)–dipyridyl frameworks featuring weakly coordinating dodecaborate dianions for selective gas separation"

Lingyao Wang,^{ac} Tao Jiang,^b Simon Duttwyler,^c Yuanbin Zhang^a*

 ^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>ybzhang@zju.edu.cn</u>

^b Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China

^c Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Fig. S1 PXRD patterns of BSF-74b. It is different from the predicted PXRD patterns from the crystal structure of BSF-74.

Fig. S2 C_2H_2 , CO_2 and C_2H_4 adsorption and desorption isotherms on activated BSF-74b at 273 K

Fig. S3 C₂H₂ adsorption and desorption isotherms on activated BSF-74b at 298 K after exposure in humid air for 1 day

Fig. S4 TGA curves of BSF-74b

	C_2H_2	C ₂ H ₂ CO ₂				
Materials	(mmol/g)	(mmol/g)	$VC_2\mathrm{H_2/CO_2}$	S	Ref	
UTSA-300a	3.08	0.15	20.53	743	J. Am. Chem. Soc. 2017, 139, 8022-8028	
Cu-CPAH	5.88	3.93	1.50	3.6	ACS Appl. Mater. Inter. 2020, 12, 5999-6006	
ZJNU-13	5.29	3.92	1.35	5.6	ACS Appl. Nano Mater. 2020, 3, 2911-2919.	
FeNi-M'MOF	4.29	2.72	1.58	24	Angew. Chem. 2020 , 59, 4396-4400	
JCM-1	3.35	1.7	1.97	13.7	Angew. Chem. 2018 , 57, 7869-7873	
SNNU-45	5.98	4.35	1.37	10.8	Angew. Chem. 2019 , 58, 13590-13595	
TIFSIX-2-Ni-i ^[b]	4.21	4.54	0.93	6.2	<i>Chem. Eng. J.</i> 2018 , <i>352</i> , 803-810	
TIFSIX-2-Cu-i ^[b]	4.1	4.3	0.95	6.5	Chem 2016, 1, 753-765	
NKMOF-1-Ni	2.72	2.28	1.19	25	Angew. Chem. 2018 , 130, 11137-11141	
ZJUT-2a	3.39	2.19	1.55	10	Chem. Commun. 2019 , 55, 11354-11357	
FJU-89a	4.53	2.73	1.66	4.3	ACS Appl. Mater. Inter. 2018, 10, 30912-30918	
TCuI	2.2	1.6	1.38	5.3		
TCuBr	2.8	2	1.40	9.5	Chem. Eur. J. 2020 , 26, 43923-4929.	
TCuCl	3	2	1.50	16.9		

Table S1 Summary of gas adsorption properties and C_2H_2/CO_2 selectivities of the reported MOFs.^[a]

MUF-17 ^[c]	2.73	2.28	1.20	6.01	Chem. Mater. 2019, 31, 4919-4926
JXNU-5a	2.5	1.55	1.61	5	Inorg. Chem. 2019 , 58, 5089-5095
SNNU-150-Al	4.33	1.98	2.19	7.27	
SNNU-150-Ga	1.78	1.19	1.50	4.93	Inorg. Chem. 2020 , 59, 4825-4834
SNNU-150-In	1.56	1.03	1.51	5.57	
UTSA-50a ^[d]	5.08	2.88	1.76	13.3	J. Mater. Chem. A 2013, 1, 77-81.
UTSA-74a ^[d]	4.83	3.17	1.52	9	J. Am. Chem. Soc. 2016, 138, 5678-5684.
FJU-90	8.03	4.6	1.75	4.3	J. Am. Chem. Soc. 2019 , 141, 4130-4136.
SNNU-65-Cu-Sc	7.99	3.14	2.54	13.5	
SNNU-65-Cu-Fe	7.25	2.9	2.50	6.7	Chem. Commun. 2018,
SNNU-65-Cu-Ga	6.32	2.62	2.41	18.7	<i>54</i> , 2012- 2015.
SNNU-65-Cu-In	6.84	2.5	2.74	7	
FJU-6-TATB ^[d]	4.91	2.59	1.90	3.1	J. Am. Chem. Soc. 2020, 142, 9258-9266
UPC-110	3.28	1.08	3.04	5.1	ACS Sustainable Chem. Eng. 2019 , 7, 2134- 2140
CPM-107op	4.35	1.56	2.79	5.7	Angew. Chem. 2019 , 58, 11757-11762
PCM-48 [d]	1.14	0.97	1.18	4.3	<i>Chem. Commun.</i> 2018 , 54, 9937-9940.
[Ni ₃ (HCOO) ₆]	2.38	1.73	1.38	22	ACS Sustainable Chem.

					1672
UTSA-83	0.53	0.17	3.12	6.2	Inorg. Chim. Acta 2019, 495, 118938
BSF-1	2.35	1.77	1.33	3.4	
BSF-2	1.85	1.33	1.39	5.1	Angew. Chem. 2020 , 59, 17664-17669
BSF-3	3.65	2.11	1.73	16.3	
HOF-3a ^[d]	2.1	0.94	2.23	21	Angew. Chem. 2015 , 54, 574-577
DICRO-4-Ni-i	1.92	1.03	1.86	13.9	ACS Appl. Mater. Inter. 2017, 9, 33395-33400
ECUT-HOF-30 ^[d]	1.95	0.4	4.88	9	Chem. Eng. J. 2019 , 123117
BSF-74b	1.58	0.5	3.16	9.7	This work

[a] all conditions are under 298 K and 1 bar, equimolar selectivity unless stated; [b] $C_2H_2/CO_2 = 2:1$; [c] 293 K; [d] 296 K.

Table S2 Summary of gas adsorption properties and C_2H_2/C_2H_4 selectivities of the reported MOFs.^[a]

Materials	C_2H_2	C_2H_4	VC_2H_2/C_2H_4	S	Ref
	(mmol/g)	(mmol/g)			
M'-MOF-3a ^[b]	1.88	0.4	4.73	24.03	Nat Commun 2011, 2, 204
UTSA-100a ^[b]	4.27	1.66	2.57	10.7	Nat. Commun 2015, 6, 7328
NOTT-300 ^[c]	6.34	4.28	1.48	2.2	Nat. Chem. 2014, 7, 121–129
MOF-74-Co ^[b]	8.17	7.02	1.16	1.70	Energ. Environ. Sci. 2012 , 5, 9107
JCM-1	3.35	1.56	2.15	13.2	Angew. Chem. Int. Ed. 2018 , 57, 7869–7873
FJU-22a ^[b]	5.13	3.83	1.34		Chem Eur. J. 2016 , 22, 5676–5683
NKMOF-1-Ni	2.72	2.11	1.29	${\sim}20^{[d]}$	Angew. Chem. Int. Ed. 2018,

57, 10971–10975

PCP-33	5.44	3.88	1.40	~1.2	<i>Inorg. Chem.</i> 2015 , <i>54</i> , 4279–4284.
SIFSIX-1-Cu	8.5	3.67	2.07	10.6 ^[e]	
SIFSIX-2-Cu-i	4.02	2.19	1.84	44.8 ^[e]	Science 2016, 353, 141–144.
SIFSIX-3-Zn	3.64	2.24	1.62	8.8 ^[e]	
UTSA-200a	3.65	0.63	5.79	>6k ^[e]	Adv. Mater. 2017 , 29, 1704210
UTSA-300a	3.08	0.04	74.9	>106	J. Am. Chem. Soc. 2017, 139, 8022–8028
MUF-17 ^[c]	2.74	1.96	1.40	6.01	<i>Chem. Mater.</i> 2019 , <i>31</i> , 4919–4926
BSF-1	2.35	1.63	1.44	2.4	
BSF-2	1.85	1.32	1.40	2.9	Angew. Chem. 2020, 59,
BSF-3	3.59	2.37	1.51	8.0	17664-17669
BSF-3-Co	3.85	2.51	1.53	10.2	
BSF-74b	1.58	0.68	2.21	5.3	This work

[a] all conditions are under 298 K and 1 bar, equimolar selectivity unless stated; [b]296 K; [c] 293 K; [d] selectivity for C_2H_2/C_2H_4 (1/9); [e] selectivity for C_2H_2/C_2H_4 (1/99).

Fig. S5 Experimental column breakthrough curves for equimolar C₂H₂/CO₂ mixtures (298 K, 1 bar, gas flow: 1 mL/min) in an adsorber bed packed with BSF-74b

Fig. S6 Experimental column breakthrough curves for equimolar

C_2H_2/C_2H_4 mixtures (298 K, 1 bar, gas flow: 1 mL/min) in an

adsorber bed packed with BSF-74b