Electronic supplementary information

Appropriate regulation of magnesium on hydroxyapatite crystallization

in simulated body fluids

Shuqin Jiang,^a Yuanyuan Cao,^a Chenxi Zong, ^b Yuanfeng Pang^{*a} and Zhiwen Sun^{*a}

^a School of public health, and department of Toxicology, Capital Medical University, Beijing 100069, China

^b School of Basic Medicine, Capital Medical University, Beijing 100069, China

* Email: yuanfengpang@163.com ; zwsun@ccmu.edu.cn

Tables

Table S1. The composition of simulated body fluid (SBF).

Ion.	Na ⁺	\mathbf{K}^+	Mg^{2+}	Cl-	SO ₄ ²⁻	Ca ²⁺	HPO ₄ ²⁻	HEPES
C/mM	140	5.0	0-1.5	148-151	0.5	5.0	3.0	10.0

Table S2. The chemical analysis of Mg in ACP and HAP in the presence of different Mg^{2+} concentrations in SBF solution, or adding 0.5 mM Mg^{2+} at different reaction times.

Group	Mg/Ca molar ration in ACP	Mg/Ca molar ration in HAP	
	$(\text{mean} \pm \text{s.d.})$	$(\text{mean} \pm \text{s.d.})$	
0.2 mM Mg	0.019 + 0.004	0.017 ± 0.002	
0.2			
0.5 mM Mg	0.032 ± 0.002	0.029 ± 0.002	
1.0 mM Mg	0.058 ± 0.005	0.040 ± 0.005	
1.5 mM Mg	0.070 ± 0.005	0.047 ± 0.003	
adding(0)	0.032 ± 0.002	0.029 ± 0.002	
adding(5)	0.013 ± 0.001	0.032 ± 0.001	
adding(10)	0.010 ± 0.001	0.028 ± 0.001	
adding(15)	0.008 ± 0.002	0.028 ± 0.002	

	20(002) (deg.)	(002) d-space (nm)	c lattice parameter (nm)	lattice distortion (%)
HAP (control)	25.889	0.3438	0.6875	control
$0.2~\mathrm{mM}~\mathrm{Mg}^{2+}$	25.911	0.3434	0.6869	-0.09
$0.5~\mathrm{mM~Mg^{2+}}$	25.924	0.3433	0.6866	-0.13
$1.0~\mathrm{mM~Mg^{2+}}$	25.938	0.3431	0.6863	-0.18
$1.5 \mathrm{~mM~Mg^{2+}}$	25.978	0.3425	0.6850	-0.36

Table S3. The (002) d-spacing, *c* lattice parameter, and lattice distortion of HAP and Mg-doped HAP. The shrinkage of the *c* lattice (lattice distortion) is calculated by [c(Mg) - c(control)] / $c(control) \times 100\%$.

Figures

Fig. S1 HAP crystallization process in the SBF solution with 0.5 mM Mg²⁺. (a) A typical pH curve; FTIR (b), XRD (c), and TEM (d-g) characterization of mineral formed in stage I, t_i (induction time), II, and III.

Fig. S2 FTIR (a) and XRD (b) characterization of final minerals formed at different Mg^{2+} concentrations.

Fig. S3 The pH curves of SBF solution by adding different Mg²⁺ concentrations.

Fig. S4 The morphology of ACP formed at different reaction times at induction period (in stage I) in control group. (a) 5 min; (b) 10 min; (c) 15 min.

Fig. S5 The pH curves of SBF solution by adding 0.5 mM Mg²⁺ at different reaction times.

Fig. S6 FTIR (a), XRD (b), and TEM (c-e) characterization of final minerals formed by adding Mg^{2+} after ACP formation at 5 min, 10 min and 15 min.

Fig. S7 The enlarged view of (002) diffraction peak in XRD patterns (Fig. S2b⁺). The (002) diffraction angle is slightly increased with the increasing Mg²⁺ concentration.

Fig. S8 The enlarged view of (002) diffraction peak in XRD patterns (Fig. S2b^{\dagger} and Fig. S6b^{\dagger}). The (002) diffraction angle is not evident change when adding 0.5 mM Mg²⁺ at different reaction times.

Fig. S9 The change of Mg^{2+} concent in ACP by adding 0.5 mM Mg^{2+} at different reaction times.

Fig. S10 Scheme of the calculation of splitting function (SF). A_1 is the area enclosed by the spectrum and the straight line and A_2 is the area enclosed by spectrum and straight baseline, the SF is defined as the radio of A_1 to A_2 . SF is used as the crystallization indicator of calcium phosphate.