Electronic Supplementary Information for

Hierarchical Z-Scheme Fe₂O₃@ZnIn₂S₄ Core-Shell Heterostructures with Enhanced Adsorption Capacity Enabling Significantly Improved Photocatalytic CO₂ Reduction

By Zihan Zhao^{a,#}, Chuanxin Shi^{a,#}, Qi Shen^{a,*}, Wenjuan Li^b, Dandan Men^b, Bo Xu^a, Yiqiang Sun^{a,*}, Cuncheng Li^{a,*}

More supplementary figures:

Figure S1. FeOOH nanorods precursor. (a) XRD pattern. (b) Low-magnification and (c) High-magnification TEM image.

Figure S2. Fe_2O_3 nanorods. (a) XRD pattern. (b) Low-magnification and (c) High-magnification TEM image.

Figure S3. (a) N_2 adsorption-desorption isotherms and (b) corresponding pore size distribution for Fe₂O₃ nanorods.

Figure S4. XRD pattern of as-prepared Fe_2O_3 (2 nIn_2S_4 core-shell nanorods.

Figure S5. EDX spectrum of as-prepared Fe_2O_3 ($ZnIn_2S_4$ core-shell nanorods.

Figure S6. $ZnIn_2S_4$ nanosheets. (a) XRD pattern. (b) Low-magnification and (c) High-magnification TEM image.

Figure S7. (a) N_2 adsorption-desorption isotherms and (b) corresponding pore size distribution for $ZnIn_2S_4$ nanosheets.

Figure S8. (a) N_2 adsorption-desorption isotherms and (b) corresponding pore size distribution for Fe₂O₃@ZnIn₂S₄ core-shell heterostructures.

Figure S9. Fe_2O_3 @ZnIn₂S₄ after repeated three rounds of photoreduction reaction.(a) XRD pattern and (b) TEM image.

Figure S10. (a) N_2 adsorption-desorption isotherms and (b) corresponding pore size distribution for Fe₂O₃@ZnIn₂S₄ core-shell heterostructures.

Figure S11. Time-resolved transient PL decay curves of Fe_2O_3 , $ZnIn_2S_4$ and Fe_2O_3 @ $ZnIn_2S_4$ core-shell samples.

Figure S12. CO_2 adsorption capacity of Fe_2O_3 , $ZnIn_2S_4$ and Fe_2O_3 @ $ZnIn_2S_4$ coreshell samples.

Figure S13. Mott-Schottky plots of (a) Fe_2O_3 and (b) $ZnIn_2S_4$.

Figure S14. Valance band XPS spectra of Fe_2O_3 and $ZnIn_2S_4$.

Table S1. Size distribution of the FeOOH NPs, Fe_2O_3 NPs and Fe_2O_3 -ZnIn₂S₄ coreshell NPs.

Catalysts	Products	Activity (CO) /μmol g ⁻¹ h ⁻¹	reference
Fe ₂ O ₃ @ZnIn ₂ S ₄	СО	37.13	This work
SnFe ₂ O ₄ /α-Fe ₂ O ₃	СО	2.87	1
g-C ₃ N ₄ /Bi ₂ O ₂ [BO ₂ (OH)]	СО	6.09	2
ZnO/ZnWO ₄ /g-C ₃ N ₄	СО	13.19	3
SnFe ₂ O ₄ -CN	СО	7.56	4
20 wt%Bi ₂ S ₃ QDs / g- C ₃ N ₄	СО	16.74	5
CdS/BiOI	СО	3.32	6
$40 \text{ wt}\%\text{Bi}_2\text{O}_3/\text{g-C}_3\text{N}_4$	СО	5.92	7
CdS/CdWO ₄	СО	1.47	8

Table S2. Compare the recently reported photocatalytic activity of Z-Schemematerials in CO2.

Reference:

[1] Jia Y, Zhang W, Do J Y, et al. Z-Scheme $SnFe_2O_4/\alpha$ -Fe₂O₃ Micro-octahedron with Intimated Interface for Photocatalytic CO₂ Reduction. Chemical Engineering Journal, (402) 2020 126193.

[2] Guo L, You Y, Huang H, et al. Z-scheme $g-C_3N_4/Bi_2O_2[BO_2(OH)]$ heterojunction for enhanced photocatalytic CO₂ reduction. Journal of Colloid and Interface ence, (568) 2020 139-147.

[3] Zhu L, Li H, Xu Q, et al. High-efficient separation of photoinduced carriers on double Z-scheme heterojunction for superior photocatalytic CO₂ reduction. Journal of Colloid and Interface ence, (564) 2019 303-312.

[4] A Y J, A H M, B W Z, et al. Z-scheme SnFe₂O₄-graphitic carbon nitride: Reusable, magnetic catalysts for enhanced photocatalytic CO₂ reduction. Chemical Engineering Journal, (383) 2020 123172.

[5] Guo R T, Liu X Y, Qin H, et al. Photocatalytic reduction of CO_2 into CO over nanostructure Bi_2S_3 quantum dots/g- C_3N_4 composites with Z-scheme mechanism. Applied Surface ence, (500) 2019 144059.

[6] Zhou R H, Wei Z H, Li Y Y, et al. Construction of visible light-responsive Z-scheme CdS/BiOI photocatalyst with enhanced photocatalytic CO₂ reduction activity. Journal of Materials Research, (34) 2019 3907-3917.

[7] Hao P, Guo R T, He L, et al. Synthesis of $Bi_2O_3/g-C_3N_4$ for enhanced photocatalytic CO_2 reduction with a Z-scheme mechanism. RSC Advances, (64) 2019 37162-37170.

[8] Li Y Y, Wei Z H, Fan J B, et al. Photocatalytic CO_2 reduction activity of Z-scheme CdS/CdWO₄ catalysts constructed by surface charge directed selective deposition of CdS. Applied Surface Science, (483) 2019 442-452.