Experimental and computational evidence for a stabilising Cl(lonepair) $\cdots \pi$ (chelate-ring) interaction

Sang Loon Tan,^a See Mun Lee,^a Kong Mun Lo,^a A. Otero-de-la-Roza^{*b} and Edward R. T.

Tiekink^{*a}

^a Research Centre for Crystalline Materials, School of Science and Technology, Sunway

University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

^b Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo,

33006 Oviedo, Spain

E-mail: alberto@carbono.quimica.uniovi.es (AO); edwardt@sunway.edu.my (ERTT)

Parameter	100 K	150 K	200 K	250 K	273 K	298 K
<i>a</i> (Å)	10.12941(5)	10.15307(7)	10.18020(9)	10.20882(12)	10.22154(11)	10.23633(14)
<i>b</i> (Å)	16.43674(9)	16.49930(13)	16.57028(17)	16.6674(2)	16.7214(2)	16.7834(3)
<i>c</i> (Å)	13.38681(7)	13.41809(10)	13.45064(12)	13.48201(16)	13.49259(15)	13.50677(18)
β (°)	96.9574(5)	97.0345(7)	97.0780(8)	97.0862(11)	97.0519(11)	97.0002(13)
$V(Å^3)$	2212.42(2)	2230.86(3)	2251.68(4)	2276.50(5)	2288.68(5)	2303.17(6)
$D_{\rm x}$ (g cm ⁻³)	1.662	1.648	1.633	1.615	1.606	1.596
μ (mm ⁻¹)	14.311	14.193	14.062	13.898	13.834	13.747
no. reflections	26819	27048	27294	27688	27792	28001
no. unique reflections	3946	3980	4018	4064	4076	4108
no. reflections with						
$I \ge 2\sigma(I)$	3863	3859	3777	3708	3657	3567
R (obs. data)	0.022	0.023	0.025	0.027	0.028	0.032
<i>a</i> and <i>b</i> in						
weighting scheme	0.037; 1.248	0.037; 1.201	0.041; 0.910	0.044; 0.795	0.044; 0.769	0.049; 0.534

ESI Table S1 Crystal data and refinement details for the crystal of 1 at 100, 150, 200, 250, 273 and 298 K.^a

$R_{\rm w}$ (all data)	0.057	0.058	0.066	0.072	0.075	0.086
Max. and min.						
residual peaks						
(e Å- ³)	0.39; 1.62	0.38; 1.52	0.39; 1.32	0.48; 0.99	0.50, 0.88	0.53, 0.81

a Each crystal has the molecular formula $C_{19}H_{22}Cl_3NS_2Sn$, M = 553.53, monoclinic, $P2_1/n$ and Z = 4.

ESI Table S2 A listing of the electrostatic potential charge deviation ($\Delta |V_{ESP}|$) for selected intermolecular interactions in the crystals of **1** obtained at 100 and 298 K, as identified through the Hirshfeld surface analysis.

Contact	$V_{\rm ESP}$ (kcal/mol)						
	100 K			298 K			
	H-donor	H-acceptor	$\Delta V_{\rm ESP} $	H-donor	H-acceptor	$\Delta V_{\rm ESP} $	
Cl2…Cg(Sn,S1,S2,C1) ⁱⁱ	10.69	-12.11	22.80	9.03	-9.91	18.94	
$Cl3\cdots Cg(Sn,S1,S2,C1)^{iii}$	9.91	-9.54	19.45	8.10	-8.28	16.38	
Cg(C8-C13) Cg(C14-	-9.48	-9.85	0.37	-8.41	-8.68	0.27	
C19) ⁱⁱ							
$H7c\cdots Cg(C14-C19)^i$	34.01	-9.48	43.49	32.19	-8.68	40.87	
H6c····Cl3 ⁱⁱ	32.82	5.27	27.55	32.50	4.71	28.33	
$H12\cdots Cl1^{iv}$	22.46	-23.78	46.24	18.39	-23.72	42.11	
S2…Cl2 ⁱⁱ	4.27	-12.11	16.38	3.99	-9.91	13.90	
Cl3 ⁱⁱ S2	4.08	-9.54	13.62	3.11	-8.28	11.39	

Symmetry element: (i) -1+x, y, z; (ii) $1\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$; (iii) $1\frac{1}{2}-x$, $-\frac{1}{2}+y$, $\frac{1}{2}-z$; (iv) 2-x, 1-y, 1-z.

ESI Table S3 The percentage contributions of various interatomic contacts to the Hirshfeld surface for **1** at 100 and 298 K

Contact	100 K	298 K
$H \cdots H$	40.6	41.1
$H \cdots Cl / Cl \cdots H$	27.4	28.1
$H^{\dots}C/C^{\dots}H$	16.9	16.4
$H \cdots S / S \cdots H$	6.2	6.0
$Cl\cdots C/C\cdots Cl$	4.1	4.0
С…С	3.0	2.8
$Cl\cdots S/S\cdots Cl$	1.6	1.5
$N \cdots Cl/Cl \cdots N$	0.2	0.1
Cl…Cl	0.1	_

ESI Table 4. Corrected interaction energies (kcal/mol) for all close contacts present at 298 K obtained from the CE-B3LYP/DGDZVP model. Scale factors of 1.057, 0.740, 0.871 and 0.618 were applied to $E_{\text{electrostatic}}$ (E_{electro}), $E_{\text{polarisation}}$ (E_{polar}), $E_{\text{dispersion}}$ (E_{dis}) and $E_{\text{repulsion}}$ (E_{rep}).

Contact	E_{electro}	$E_{\rm polar}$	$E_{\rm dis}$	$E_{\rm rep}$	$E_{\rm total}$	Symmetry operation	
C6–H6c···Cl3 ⁱⁱ +							
Cg(C8-C13)Cg(C14-C19) ⁱⁱ +							
$Cl2\cdots\pi(chelate-ring)^{ii} +$							
$Cl3^{ii} \cdots \pi$ (chelate-ring) +							
$Cl2\cdots S2^{ii}$ +							
Cl3 ⁱⁱ ····S2	-5.83	-0.72	-12.21	7.98	-10.78	$1^{1/2}-x$, $1/2+y$, $1/2-z$	
$C7-H7c\cdots C17^{i} +$							
$C7\cdots\pi(C14-C19)^i$	-4.40	-0.65	-9.66	4.47	-10.24	-1+ <i>x</i> , <i>y</i> , <i>z</i>	
C12–H12····Cl1 ^{iv} (× 2)	-2.68	-0.57	-3.32	2.63	-3.94	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>	

ESI Figure 1. Experimental (293 K; red trace) and theoretical (based on single crystal data measured at 100 K) PXRD traces for **1** confirming the homogeneity of the sample and the absence of phase change in the bulk material.

ESI Figure 2. A plot of the variation in the unit cell dimensions a, b and c (Å) in 1 with temperature.

ESI Figure 3. A comparison of the molecular packing of **1** measured at 100 K (red) and 298 K (blue) viewed along the *a*- and *c*-axes, respectively.

ESI Figure 4. Image of the non-covalent interaction plot for **1** measured at 298 K, highlighting the weakly attractive: (a) Cl2(lone-pair) $\cdot \pi$ (chelate-ring)ⁱⁱ, π (chlorophenyl) $\cdot \pi$ (chlorophenyl)ⁱⁱ and Cl3ⁱⁱ $\cdot \cdot H6c$ –C6 interactions. Symmetry operation: (ii) 1¹/₂-*x*, ¹/₂+*y*, ¹/₂-*z*.

ESI Figure 5. An image of Quantum Theory of Atoms in Molecule (QTAIM) analysis for **1** measured at 298 K. Symmetry operation: (ii) $1\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$.

ESI Figure 6. Simulated energy framework for 1 measured at 298 K within $2 \times 2 \times 2$ unitcells, showing the decomposed frameworks delineated into (a) electrostatic or coulombic potential (red), (b) dispersion force (green) and (c) overall energy framework. The frameworks are drawn at a scale of 150 with an energy cut-off of 1.91 kcal/mol.