Supporting Information

A Different Approach: Highly Encapsulating Macrocycles Being Used as Organic Tectons in the Building of CPs

Agustín Esteban-Muriel,^a Carlos J. Laglera-Gándara,^a Marta Mato-Iglesias,^a Raphaël Tripier,^b Maryline Beyler, *^b Andrés de Blas *^a and Teresa Rodríguez-Blas *^a

^a Universidade da Coruña, Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias; Campus da Zapateira s/n 15071 A Coruña (Spain). E-mail: <u>andres.blas@udc.es</u>; <u>teresa.rodriguez.blas@udc.es</u>

^b Univ. Brest, UMR CNRS 6521 CEMCA, 6 avenue Le Gorgeu, CS93837, 29200 Brest (France). E-mail: <u>maryline.beyler@univ-brest.fr</u>

INDEX

- 1. NMR, Mass and IR spectra (Figures S1- S12).
- 2. ¹H NMR titration of H_2 cb-teapa in D_2 O solution at basic pD (Figure S13).
- 3. Thermal decomposition of (4) (Figure S14)
- 4. Tables with the optimized Cartesian coordinates (Table S1).

1. NMR, Mass and IR spectra

Figure S1. ¹H NMR spectrum of (1) in $CDCl_3$ (300 MHz, 298 K).

Figure S2. J-mod ¹³C NMR spectrum of (1) in CDCl₃ (300 MHz, 298 K).

Figure S3. Mass spectrum (ESI-TOF⁺) of (1).

Figure S4. ¹H NMR spectrum of (2) in $CDCl_3$ (400 MHz, 298 K).

Figure S5. J-mod ¹³C NMR spectrum of (**2**) in CDCl₃ (400 MHz, 298 K).

Figure S6. High Resolution Mass spectrometry (ESI⁺) of (2). m/z calcd for $[C_{26}H_{43}N_5O_4 + H]^+$: 490.3388, found: 490.3385, $[M+H]^+$.

Figure S7. ¹H NMR spectrum of ligand H_2cb -teapa (3) in D₂O (500 MHz, 298 K, pD=7.55): a) Aliphatic region. b) Aromatic region.

Figure S8. ¹³C NMR spectrum of ligand H₂cb-teapa (3) in D₂O (298 K, pD=7.55, ^tBuOH as internal standard).

Figure S9. High Resolution Mass spectrometry (ESI-TOF⁺) of the ligand **H₂cb-teapa** (3). m/z calcd. for $[C_{21}H_{33}N_5O_4+H]^+$: 420.2605; found: 420.2619, $[M+H]^+$.

Figure S10. IR spectrum of the ligand H₂cb-teapa (3).

Figure S11. Mass spectrum (ESI-TOF⁺) of (4).

Figure S12. IR spectrum of (4).

2. ¹H NMR titration of H₂cb-teapa.

Figure S13. ¹H NMR titration of H₂cb-teapa in D₂O solution at basic pD.

Figure S14. PXRD pattern of the black residue resulting from the thermal decomposition of (4).

3. Tables with optimized Cartesian coordinates.

Center		Coordinates (Angstroms)			
Number	Symbol	Х	Y	Z	
1	Pb	-0.4802360	1.7526315	0.1580967	
2	С	1.0587768	-0.2567935	1.5166155	
3	С	1.9420266	-1.3125331	2.1395225	
4	С	1.6356129	-1.7839399	3.4208502	
5	Н	0.7836835	-1.3742810	3.9502318	
6	С	2.4376038	-2.7821786	3.9750228	
7	Н	2.2191377	-3.1867472	4.9582481	
8	С	3.5247178	-3.2530432	3.2411604	
9	Н	4.1724246	-4.0296325	3.6357800	
10	С	3.7731916	-2.6953894	1.9791851	
11	С	5.0224103	-3.0988468	1.2265871	
12	Н	5.8240342	-2.4167509	1.5321985	
13	Н	5.2992400	-4.1335997	1.4413651	
14	С	6.1777271	-3.3204872	-0.9708922	
15	Н	5.9316760	-3.4528734	-2.0244053	
16	Н	6.5051490	-4.2874472	-0.5812899	
17	С	7.2955442	-2.2975353	-0.7955684	
18	Н	7.5489280	-2.1934530	0.2621149	
19	Н	8.1737717	-2.7327450	-1.3042199	
20	С	8.1696344	-0.0743849	-0.9763755	
21	Н	9.0412769	-0.3330703	-1.5990366	
22	Н	8.4276157	-0.2843769	0.0656646	
23	С	7.8715726	1.4260333	-1.1069330	
24	Н	8.7938427	1.9670285	-0.8663887	
25	Н	7.6323495	1.7036964	-2.1392894	
26	С	6.8022636	1.9282091	-0.1355013	
27	Н	7.1412047	1.7929093	0.8919710	
28	Н	6.5560373	2.9804298	-0.3019511	
29	С	4.7698495	1.4587839	-1.5080780	
30	Н	5.5125291	1.5655249	-2.3005289	
31	Н	4.2806691	2.4255158	-1.3667860	
32	С	3.7173961	0.4177626	-1.8748527	
33	Н	2.9387533	0.3804239	-1.1095824	
34	Н	3.2465269	0.7790305	-2.8057324	
35	С	3.0235497	-1.8296709	-2.3149119	
36	Н	2.5947221	-1.6088008	-3.3055156	
37	Н	2.2775798	-1.5629482	-1.5599528	
38	С	3.3183429	-3.3330562	-2.2134363	
39	Н	2.3904442	-3.8667440	-2.4479898	
40	Н	4.0393979	-3.6589692	-2.9703863	
41	С	3.7369615	-3.7931798	-0.8156685	
42	Н	4.0538103	-4.8391734	-0.8037918	
43	Н	2.9098918	-3.6630872	-0.1189242	
44	С	6.7045566	-0.9049371	-2.7540243	
45	Н	7.3042320	-1.6541261	-3.2949589	
46	Н	7.0380922	0.0655839	-3.1243920	
47	С	5.2051563	-1.0942286	-3.1487004	

Table S1. Calculated Cartesian coordinates for compound at DFT level using the functional RTPSSh and 6-31G(d) basis set for all atoms except Pb for which the ECP ECP60MDF with the associated basis set was used. (0 imaginary frequencies)

48	Н	4.9665163	-0.3870363	-3.9580285
49	Η	5.0850017	-2.0889012	-3.5807408
50	С	4.7079317	1.2798438	1.0152251
51	Н	3.7044911	0.8997126	0.8136874
52	Н	4.6403453	2.3404480	1.2645227
53	С	5.3487519	0.4363280	2.1507786
54	N	2.9944693	-1.7550843	1.4255456
55	N	4 8873701	-2.9697815	-0 2645787
56	N	7.0070863	-0.9471367	-1 3076786
50 57	N	5 5159872	1 1401589	-0 2417976
58	N	A 2139171	-0.96/1/62	-2 05/3257
50	0	1 1862821	-0.9041402	0.2677403
59	0	0.2157852	-0.0010033	0.2077493
61	0	6.2137632	0.3313449	2.2312007
61	0	0.2303704	-0.5783933	1.//39/83
62 62	U C1	4.8801919	0.03030/8	3.2939343
63	CI	-0.6310332	1.10/8/00	-2.5132950
64	H	4.6755235	-1.9/3/1//	-0.5433087
65	Н	5.8360468	0.1380970	-0.2998117
66	0	-2.2150466	0.0607545	0.4048956
67	0	-2.6904729	1.7791396	1.7745812
68	0	-6.8295065	0.7830803	1.9091525
69	0	-7.6281274	2.8976632	1.7879389
70	С	-6.9277370	1.9331131	1.3845464
71	С	-6.0964003	2.2079095	0.1196683
72	С	-5.9758999	3.5273939	-0.3413353
73	Ν	-5.5092135	1.1736628	-0.5173969
74	Н	-6.4789931	4.3121834	0.2111585
75	С	-5.2313741	3.7881376	-1.4896714
76	Н	-5.1219461	4.8014167	-1.8657112
77	С	-4.6448587	2.7161358	-2.1663776
78	H	-4.0761375	2.8679898	-3.0787201
79	C	-4 8137136	1 4320232	-1 6380546
80	Č	-4 1498719	0.2530310	-2 3168860
81	н	-3 1685767	0.0768133	-1 8710936
82	н	-4 0188958	0.4341516	-3 3862005
83	N	4.0100250	1 0164734	2 17/8806
83	C	4.9439199	-1.0104734	-2.1740090
04 05		-4.2130203	-2.190/130	-2.7090143
83	П	-4.93/932/	-5.0050512	-2.8383941
80 97	П	-3.9070334	-1.9114930	-5.7788749
8/	U U	-2.9888208	-2.0430955	-1.9764403
88	H	-2.2511/36	-1.83//00/	-1.9322525
89	H	-2.5391894	-3.4642266	-2.5615163
90	Ν	-3.2583565	-3.0780691	-0.5921826
91	С	-1.9493175	-3.4103975	0.0461292
92	Н	-1.5274066	-4.3287047	-0.3918795
93	Η	-1.2679376	-2.5871247	-0.1881999
94	С	-2.0291953	-3.5619576	1.5720968
95	Н	-1.0235931	-3.8107433	1.9297449
96	Η	-2.6587468	-4.4102554	1.8606963
97	С	-2.4473134	-2.2876615	2.3085312
98	Н	-1.6913866	-1.5129936	2.1803809
99	Н	-2.6000126	-2.4671406	3.3761832
100	Ν	-3.7395529	-1.7072703	1.7644883
101	С	-4.9297874	-2.5327720	2.1843779
102	Н	-4.6256491	-3.5784959	2.1205051
103	Н	-5.1300860	-2.3072151	3.2345503
-				

104	С	-6.1822038	-2.2562519	1.3602758
105	Η	-6.4954604	-1.2157882	1.4968042
106	Η	-6.9671213	-2.9100545	1.7796912
107	Ν	-6.0467743	-2.4877074	-0.0944880
108	С	-7.3398253	-2.0805986	-0.7216904
109	Н	-8.1440211	-2.7777088	-0.4368585
110	Η	-7.5848614	-1.0988422	-0.3044266
111	С	-7.2831057	-1.9715063	-2.2520680
112	Н	-8.2850797	-1.6953217	-2.5992194
113	Η	-7.0702364	-2.9378274	-2.7211184
114	С	-6.3352919	-0.8869142	-2.7665573
115	Η	-6.2287043	-0.9154857	-3.8539968
116	Η	-6.6973952	0.0969360	-2.4693053
117	С	-4.1876185	-4.2304750	-0.5111758
118	Η	-4.0224109	-4.9107074	-1.3608976
119	Η	-3.9184758	-4.7989062	0.3797250
120	С	-5.7090995	-3.8878074	-0.4387903
121	Η	-6.1860141	-4.5786757	0.2737856
122	Н	-6.1594806	-4.1063368	-1.4081846
123	С	-3.8758675	-0.2563447	2.1213773
124	Η	-4.8918456	0.0880012	1.8705481
125	Н	-3.7299916	-0.1631859	3.2006859
126	С	-2.8498707	0.6006034	1.3826813
127	Н	-5.1007437	-1.2524068	-1.1586906
128	Н	-3.6653842	-1.8210310	0.7186217
129	0	1.7509648	3.5776973	-0.8833699
130	0	1.5408914	3.6625689	1.5497608
131	0	1.4001045	5.7285052	0.2390554
132	0	3.5441812	4.5694205	0.4618872
133	Cl	2.0642335	4.3965142	0.3434571

Charge = 0Spin = SingletSolvation = scrf=(cpcm,solvent=water) E(RTPSSh) = -4203.6177 Hartree Imaginary Freq = 0Dipole Moment = 56.50735 Debye Point Group = C1Molecular Mass = 1180.4005 amu Thermo Tab Data Section: Imaginary Freq = 0Temperature = 298.15 Kelvin Pressure = 1 atm Frequencies scaled by = 1Electronic Energy (EE) = -4203.6177 Hartree Zero-point Energy Correction = 1.123316 Hartree Thermal Correction to Energy = 1.189783 Hartree Thermal Correction to Enthalpy = 1.190727 Hartree Thermal Correction to Free Energy = 1.01206 Hartree EE + Zero-point Energy = -4202.4944 Hartree EE + Thermal Energy Correction = -4202.4279 Hartree EE + Thermal Enthalpy Correction = -4202.427 Hartree EE + Thermal Free Energy Correction = -4202.6057 Hartree E (Thermal) = 746.6 kcal/mol Heat Capacity (Cv) = 252.473 cal/mol-kelvin Entropy (S) = 376.038 cal/mol-kelvin