Supporting information for

A Nonlinear Optical Cadmium(II)-Based Metal–Organic Framework with Chiral Helical Chains Derived from an Achiral Bent Dicarboxylate Ligand

Kai Ting Hsu,^{a,b,c} Pounraj Thanasekaran,^a Ting-Wei Hsu,^b Cing-Huei Su,^a Bor-Chen Chang,^c Yen-Hsiang Liu,^{a,*} Chen-Hsiung Hung,^{b,*} and Kuang-Lieh Lu^{a,b,*}

^aDepartment of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan ^bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan ^cDepartment of Chemistry, National Central University, Taoyuan 320, Taiwan

*E-Mail: 056461@gapp.fju.edu.tw (Y.-H. Liu) *E-Mail: chhung@gate.sinica.edu.tw (C.-H. Hung) *E-Mail: kllu@gate.sinica.edu.tw (K.-L. Lu)

Fig. S1. ESI-MS spectrum of H_2TDB ligand.

Fig. S2. FT-IR spectrum of H₂TDB ligand.

Fig. S3. ¹H NMR spectrum of 2,5-TDBMe ligand in CDCl₃.

Fig. S4. ¹H NMR spectrum of H₂TDB in DMSO.

Fig. S5. ¹³C NMR spectrum of H₂TDB in DMSO.

Fig. S6. FT-IR spectrum of compound 1.

Fig. S7. Solid-state excitation spectra of the H₂TDB ligand and compound 1.

Fig. S8. Solid-state CD spectrum of compound 1.

Donor–H	DonorAcceptor	H…Acceptor	Donor-HAcceptor
O11–H11A 0.979 (0.000) 0.938	O11–O3 (7) 2.799 (0.000)	H11A-O3 (7) 2.082 (0.000) 2.108	O11-H11AO3 (7) 128.53 (0.01) 129.41 (**)
O11–H11A 0.979 (0.000) 0.938	O11-O11 (8) 3.024 (0.000)	H11A-O11 (8) 2.680 (0.000) 2.688	O11–H11A…O11 (8) 100.97 (0.00) 101.84 (**)
O11–H11B 0.980 (0.000) 0.938	O11-O11 (8) 3.024 (0.000)	H11B-O11 (8) 2.797 (0.000) 2.800	O11–H11B…O11 (8) 93.77 (0.00) 94.63 (**)
O11–H11B 0.980 (0.000) 0.938	O11-O2 (9) 2.796 (0.000)	H11B-O2 (9) 2.070 (0.000) 2.097	O11-H11B····O2 (9) 129.34 (0.01) 130.23 (**)

Table S1. Selected hydrogen bond geometry (Å,°).

(**) Values normalized following the refs. (a) G. A. Jeffrey and L. Lewis, *Carbohydr. Res.* **1978**, *60*,179; (b) R. Taylor and O. Kennard, *Acta Cryst.***1983**, *B39*, 133.

Equivalent positions:

(0)	x, y, z
(1)	-x+2, +y-1/2, -z
(2)	x, +y-1, +z
(3)	x, +y+1, +z
(4)	x, +y+1, +z-1
(5)	x, +y+1, +z+1
(6)	x, +y, +z-1
(7)	-x+1, +y+1/2, -z+2
(8)	-x+1, +y-1/2, -z+1
(9)	-x+1, +y+1/2, -z+1

(10) -x+2, +y+1/2, -z+1