Spacer group-controlled luminescence and response of C3-symmetric

triphenylamine derivatives to force

Yanning Han, Tong Zhang, Xinyu Chen, Qiao Chen, Pengchong Xue*

Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry, Tianjin Normal University No. 393 Bin Shui West Road, Tianjin, P. R. China. E-mail: xuepengchong@126.com; hxxyxpc@tjnu.edu.cn

Fig. S1 Cyclic voltammetry curves of two compounds.

	Dipole moment (Debye)	Transition	Transition assignment	E (eV)	λ _{abs} (nm)	Oscillator strength
		$S_0 \rightarrow S_1$	HOMO→LUMO (96.73 %)	2.7785	446.22	1.3087
TPAVCN	0.4229	$S_0 \rightarrow S_2$	HOMO→LUMO+1 (96.79%)	2.7829	445.52	1.1527
		S ₀ →S ₃	HOMO-1→LUMO+1 (2.07%) HOMO→LUMO+2 (89.48%)	3.2429	382.33	0.0042
TPACN	0.0375	$S_0 \rightarrow S_1$	HOMO→LUMO (97.84 %)	3.2954	376.24	0.7987
		$S_0 \rightarrow S_2$	HOMO→LUMO+1 (97.86%)	3.3153	373.98	0.8283
		$S_0 \rightarrow S_3$	HOMO→LUMO+2 (98.09%)	3.8036	325.96	0.0009

Table S1. Photophysical data of TPACN and TPAVCN obtained by quantum chemical calculation.

Table S2. Data of orbital composition analysis by natural atomic orbital (NAO) method for TPACN.

НОМО		LUMO		LUMO+1	
1(C)	1.405%	1(C)	9.987%	10(C)	0.539%
3(C)	1.170%	2(C)	3.948%	14(C)	4.602%
5(C)	1.170%	3(C)	3.571%	15(C)	6.111%
7(C)	6.572%	4(C)	10.490%	16(C)	1.165%
9(C)	4.651%	5(C)	3.435%	17(C)	3.064%
10(C)	2.503%	6(C)	4.123%	18(C)	4.362%
11(C)	4.682%	7(C)	5.172%	19(C)	3.011%
13(N)	25.418%	8(C)	3.665%	20(C)	1.205%
14(C)	2.636%	9(C)	1.364%	21(C)	0.750%
15(C)	2.655%	10(C)	7.320%	22(C)	2.398%
16(C)	4.909%	11(C)	1.322%	23(C)	3.109%
18(C)	6.944%	12(C)	3.769%	24(C)	2.154%
20(C)	4.901%	14(C)	2.944%	25(C)	0.863%
21(C)	4.848%	15(C)	1.110%	26(C)	6.525%
23(C)	6.916%	18(C)	0.602%	27(C)	8.728%
24(C)	0.509%	21(C)	0.614%	28(C)	2.106%
25(C)	4.857%	22(C)	1.245%	29(C)	2.565%
28(C)	1.237%	23(C)	1.987%	30(C)	6.172%
30(C)	1.489%	24(C)	1.513%	31(C)	2.460%
32(C)	1.231%	26(C)	3.863%	32(C)	2.182%
33(C)	1.207%	27(C)	1.109%	33(C)	2.820%
35(C)	1.450%	28(C)	1.362%	34(C)	3.482%
37(C)	1.212%	29(C)	1.412%	35(C)	8.311%
63(N)	0.621%	30(C)	3.690%	36(C)	3.299%
65(N)	0.601%	31(C)	1.551%	37(C)	2.958%
67(N)	0.637%	32(C)	1.250%	62(C)	1.900%

35(C)	1.067%	63(N)	5.551%
63(N)	0.708%	66(C)	1.409%
64(C)	2.259%	67(N)	4.114%
65(N)	6.637%		
66(C)	0.827%		
67(N)	2.443%		

Table S3. Data of orbital composition analysis by natural atomic orbital (NAO) method for TPAVCN.

НОМО		LUMO]	LUMO+1	
1(C)	0.904%	6(C)	0.514%	1(C)	9.378%	
2(C)	5.050%	10(C)	3.331%	2(C)	7.341%	
3(C)	5.733%	11(C)	5.781%	3(C)	3.095%	
4(C)	0.721%	12(C)	1.167%	4(C)	2.795%	
5(C)	4.011%	13(C)	2.941%	5(C)	1.215%	
6(C)	2.475%	14(C)	3.082%	6(C)	5.617%	
7(C)	3.558%	15(C)	3.813%	8(C)	3.829%	
8(C)	0.683%	17(C)	0.663%	10(C)	3.026%	
9(N)	19.634%	18(C)	1.654%	11(C)	0.831%	
10(C)	2.388%	19(C)	1.743%	17(C)	0.657%	
11(C)	2.305%	20(C)	2.046%	18(C)	1.362%	
12(C)	3.763%	22(C)	5.245%	19(C)	1.570%	
13(C)	0.651%	23(C)	9.602%	20(C)	2.125%	
14(C)	5.305%	24(C)	4.115%	22(C)	4.941%	
15(C)	0.612%	25(C)	7.435%	23(C)	1.002%	
16(C)	3.348%	27(C)	3.080%	24(C)	3.813%	
17(C)	3.886%	28(C)	5.640%	25(C)	0.765%	
18(C)	0.670%	29(C)	2.799%	26(C)	5.493%	
19(C)	5.523%	30(C)	2.612%	27(C)	2.887%	
20(C)	0.660%	31(C)	6.823%	28(C)	0.587%	
21(C)	3.457%	32(C)	1.323%	31(C)	0.706%	
22(C)	0.853%	33(C)	3.903%	34(C)	2.746%	
23(C)	0.806%	39(C)	1.542%	35(C)	2.540%	
24(C)	4.838%	40(C)	1.423%	36(C)	6.668%	
25(C)	4.634%	41(C)	3.740%	37(C)	1.288%	
29(C)	1.110%	42(C)	0.723%	38(C)	3.818%	

31(C)	1.347%	43(C)	2.145%	39(C)	1.431%
33(C)	1.056%	76(C)	1.058%	40(C)	1.339%
34(C)	1.213%	77(N)	3.937%	41(C)	3.494%
36(C)	1.476%	78(C)	0.577%	42(C)	0.677%
38(C)	1.154%	79(N)	2.156%	43(C)	2.000%
39(C)	1.159%			74(C)	1.031%
41(C)	1.409%			75(N)	3.843%
43(C)	1.104%			78(C)	0.542%
75(N)	0.623%			79(N)	2.017%
77(N)	0.567%				
79(N)	0.594%				

Table S4. Crystal data of TPAVCN				
	TPAVCN			
Molecular formula	C39H30N4			
Space group	Cc			
	a=10.4053(2) Å			
Cell lengths	b=32.0280(6) Å			
	c=10.3784(2) Å			
	α=90°			
Cell angles	$\beta = 93.2313(18)^{\circ}$			
	$\gamma=90^{\circ}$			
Cell volume	3453.20(12)			
Ζ	4			
R-factor (%)	6.34			

Fig. S3 The plots of $\tilde{\nu}^{\text{max}}$ of two compounds against the solvent polarity parameter $(f(\varepsilon) - \frac{1}{2}f(n^2))$.

Fig. S4 Reversible curves of fluorescence maxima.

Fig. S5 UV-Vis absorption spectra of (a) TPACN and (b) TPAVCN before and after grinding.

Fig. S7¹³H NMR spectrum of TPACN in CDCl₃.

8500

Fig. S9 ¹³H NMR spectrum of TPAVCN in CDCl₃.