Supplementary Information

Porous urchin-like 3D Co(II)Co(III) LDHs for high performance heterogeneous Fenton degradation

Hira Fazal,^{a, b} Asma Iqbal,^a Yucai Cao,^b Jiantao Zai^{*},^{a, b} Nazakat Ali,^a Yuchi Zhang,^a Xiangyang Wu,^b Xiwang Zhang^{*},^c and Xuefeng Qian^{*a}

 ^a School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
 E-mail: zaijiantao@sjtu.edu.cn; Fax: +86-21-54741297; Tel: +86-21-54743262

^b State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefin (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai).

^cDepartment of Chemical Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia

Fig. S1. Energy spectra microanalysis micrographs and EDS distribution maps for cobalt, carbon and oxygen in Co(II)Co(III) LDH (CCLH (120).

Fig. S2.TGA curve of Co(II)Co(III) LDH in air

Fig. S3. XRD patterns of the prepared Co(II)Co(III) LDHs.

Fig. S4. SEM images of Co(II)Co(III) LDHs synthesized by using (a, b) water and (c, d) n-butanol as a solvent.

Fig. S5. SEM images of Co(II)Co(III) LDHs synthesized at different reaction time (a) 0.5 h, (b) 1h, (c) 3h, (d) 6h.

Fig. S6. BET N₂ adsorption–desorption isotherms of the prepared Co(II)Co(III) LDHs.

Fig. S7. UV–visible absorption spectra of fenton degradation of RhB at different durations with the addition of 40 μ L H₂O₂ and 4mg Co(II)Co(III) LDH at its original pH (a) CCLH(110°C) (b) CCLH(120°C) (c) CCLH(130°C) (d) CCLH(only n-Butanol) (e) CCLH(only H₂O).

Fig. S8. UV–visible absorption spectra of pH effect on degradation efficiency of catalyst (a) pH 3 (b) pH 4 (c) pH 5 (d) pH 6.

Fig. S9. UV–visible absorption spectra of effect of H_2O_2 dosage on degradation efficiency of catalyst (a) 20 µL(b) 40 µL(c) 50 µL (d) 60 µL.

Fig. S10. UV–visible absorption spectra of effect of an amount of catalyst on degradation of RhB (a) 4mg (b) 5mg, (c) 6mg (d) 7mg.

Fig. S11. UV–visible absorption spectra of fenton degradation of different dyes (a) RhB, (b) MB, (c) MO at different durations with the addition of 60 μ L H₂O₂ and 5mg (CCLH 120).

\$12. Fenton degradation of various dyes (a,b RhB), (c,d MB), (e,f MO) at different durations

with the addition of 60 μL H2O2 and 5 mg (CCLH 120) following the pseudo-first order kinetics.

 Table S1: Description of RhB degraded at different time intervals and calculations of rate

 constants for different Co(II)Co(III) LDHs.

Co LDH synthesized	Degradation	Percentage	Rate Constants
	time(min)	of dye	(min ⁻¹)
		degraded	
CCLH (110°C)	20	16	6.20 x 10 ⁻³
	60	22	
	120	54	

CCLH (120°C)	20	37	5.16 x 10 ⁻²
-	60	68	
-	120	95	
CCLH (130°C)	20	34	3.53 x 10 ⁻²
-	60	54	
-	120	75	
CCLH (n-Butanol)	20	34	1.15 x 10 ⁻²
-	60	54	
-	120	75	
CCLH (H₂O)	20	8	3.50 x 10 ⁻³
-	60	24	
-	120	36	

Table S2: Description of degradation efficiencies of CCLH (120) for different dyes atdifferent time intervals.

Degradatio	Percentag	Percentag	Percentag
n time(min)	e of RhB	e of MB	e of MO
	degraded	degraded	degraded
05	27	67	22
10	70	77.3	34
35	95	97	77

Table S3: Calculations of rate constants and wavelength maxima shift for different dyes usingCCLH (120).

Dyes	Rate	
	Constants	
	(min ⁻¹)	
RhB	8.40 x 10 ⁻²	
МВ	8.64 x 10 ⁻²	
МО	3.94 x 10 ⁻²	