Supporting Information for

$AB_{11}O_{16}(OH)_2$ (A = K and Cs): Interpenetrating 2D Layer with Large Birefringence

Zhen Chen,^{a,b#} Jingyu Guo,^{a,b#} Shujuan Han,^a Hao Zeng,^a Zhihua Yang^a and Shilie

Pan*^a

^aKey Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China,

*Corresponding authors, E-mails: <u>slpan@ms.xjb.ac.cn</u>

Experimental Section

Synthesis.

KCl (Shanghai Aladdin Reagent Co., Ltd., 99.5%), CsCl (Tianjin Baishi Chemical Reagent Co., Ltd., 99.5%), B₂O₃ (Shanghai Aladdin Reagent Co., Ltd., 99.0%) and H₃BO₃ (Shanghai Aladdin Reagent Co., Ltd., 99.5%) were of analytical grade and obtained from commercial sources without further purification.

Crystals of KB₁₁O₁₆(OH)₂ (KBOH) and CsB₁₁O₁₆(OH)₂ (CBOH) were grown in closed system by high-temperature solution method. A mixture of B₂O₃ (0.278 g, 4 mmol), HBO₃ (0.062 g, 1 mmol) and KCl (0.075 g, 1 mmol) was placed in a fused-silica tube (Φ 10 mm x 100 mm) which was washed by using deionized water. Then it was flame-sealed under a high vacuum of 10⁻³ Pa. Subsequently, the tube was moved into a muffle furnace and heated to 400 °C at a rate of 20 °C/h, held at this temperature for 36 h, and then cooled to 300 °C with a rate of 1.0 °C/h, finally cooled to room temperature with a rate of 10 °C/h. CsB₁₁O₁₆(OH)₂ (CBOH) was obtained through the similar process and the maximum temperature was 370 °C. The mixture was weighed as follows: CsCl (0.168 g, 1 mmol), HBO₃ (0.092 g, 1.5 mmol) and B₂O₃ (0.278 g, 4 mmol).

The polycrystalline sample of KBOH was obtained from a reaction of KCl (0.746 g, 10 mmol), B_2O_3 (0.618 g, 10 mmol) and H_3BO_3 (3.481 g, 50 mmol). The above materials were fully ground in an agate mortar, then transfered to a tidy quartz tube which was flame-sealed under 10⁻³ Pa. The mixture was heated to 220 °C with a rate of 10 °C/h, held at this temperature for 72 h, then slowly dropped to room temperature. The synthesis of the polycrystalline was followed by this chemical reaction:

$$KCl + H_3BO_3 + 5B_2O_3 \rightarrow KB_{11}O_{16}(OH)_2 + HCl$$
 (1)

Meanwhile, we also tried to synthesize the polycrystalline sample of CBOH using the same method in the different temperatures; however, these attempts were failed.

Powder X-ray Diffraction.

The pure phase was examined by the powder X-ray diffraction (XRD) carried on a Bruker D2 PHASER diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å) operating at room temperature. The pattern was taken in the 2 θ range from 5° to 70° with a scan step width of 0.02° and a fixed counting time of 1s per step.

Single Crystal X-ray Diffraction.

The APEX II CCD X-ray diffractometer with monochromatic Mo K α radiation ($\lambda = 0.71073$ Å) was utilized to record the X-ray diffraction data for colorless KB₁₁O₁₆(OH)₂ and CsB₁₁O₁₆(OH)₂ single crystal at 296(2) K. The direct methods and SHELXTL system were used to solve and refine the crystal structure, respectively.¹ Use full matrix least-squares techniques to determine all atom positions, and the final least-squares refinement is on F_0^2 with data having $F_0^2 \ge 2\sigma$ (F_0^2). The structure was checked for missed symmetry elements using PLATON.² The information of crystal data and structural refinements is summarized in Tables S1. Similarly, Tables S2 and S3 listed the atomic coordinates, site occupancy factors (SOF), equivalent isotropic displacement parameters, and selected bond lengths and angles, respectively.

Infrared Measurement.

The coordination of B atoms was determined by measuring infrared (IR) spectroscopy

measured on a Shimadzu IRAffinity-1 Fourier transform IR spectrometer. The sample was mixed thoroughly with dried KBr (~ 6 mg of the sample and 600 mg of KBr), and the IR spectrum was collected in the range from 400 to 4000 cm⁻¹ with a resolution of 2 cm⁻¹.

UV-Vis-NIR Diffuse Reflectance Measurement.

A Shimadzu SolidSpec-3700DUV spectrophotometer was used to collect the UV-Vis-NIR diffuse reflectance data of the reported samples, and the measurement range extended from 190 to 2600 nm at room temperature.³

Thermal Analysis.

Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) of KBOH were performed on a simultaneous NETZSCH STA 449C instrument at a temperature range of 40-800 °C with a rate of 5 °C·min⁻¹ in an atmosphere of flowing N₂. When the sample is heated to 110 °C, the TG curve shows the weight loss (hydroxyl begins to decompose), and the absorption peak on the DSC curve at 335 °C corresponds to the melting of the decomposed sample of KBOH (Figure S7).

Birefringence.

The birefringence was measured by polarizing microscope (ZEISS Axio Scope. A1) with Berek compensator, the wavelength of the light source was 546 nm. In order to improve the precision of birefringence, thin and transparent lamellar crystals were screened under a microscope for measurement before scanning.

The formula for calculating the birefringence can be given by the following equation:

$$R = V_0(t_g - t_p) = d(V_0/V_g - V_0/V_p) = d(N_g - N_p) = d^*\Delta n$$
⁽²⁾

Here, *R* represents the optical path difference, V_0 represents in the speed of light in air, V_g and V_p represent the propagation speed of light through the crystal, t_g and t_p mean the time required to pass through the wafer in slow and fast light, Δn means the birefringence, N_g and N_p denote the refractive index of light in a crystal, and d denotes the thickness of the crystal.

Theoretical Calculation.

The density functional theory method was utilized for calculating the band structure, the total/partial density of states (T/PDOS) for KBOH and CBOH, which were performed by the plane wave pseudopotential implemented in the CASTEP code.⁴ The cutoff energy of plane waves was set to 830 eV. The region integration of Brillouin was carried out using the Monkhorst-Pack18 scheme, with the grid of *k*-point being $2 \times 2 \times 1$ and the spacing of *k*-point being 0.07 Å^{-1.5} The Perdew-Burke-Ernzerhof (PBE) method in generalized gradient approximation (GGA) was chosen to describe the exchange-correlation potential,⁶ and the norm conserving pseudopotential (NCP) was used for the following valence electrons, K: $4s^1$, Cs: $6s^1$, B: $2s^22p^1$, O: $2s^22p^4$, H: $1s^1$. Other calculation parameters were set as the default values in the CASTEP.

Empirical formula	KB ₁₁ O ₁₆ (OH) ₂ CsB ₁₁ O ₁₆ (OH) ₂			
Temperature	296(2) K			
Crystal system, space group	Monoclin	nic, <i>C</i> 2/ <i>c</i>		
Unit cell dimensions (Å)	<i>a</i> =14.163(17)	<i>a</i> =14.183(7)		
	$b = 10.101(12)$ $\beta = 106.827(15)$	$b = 10.192(5)$ $\beta = 106.022(6)$		
	<i>c</i> =10.664(12)	<i>c</i> =11.348(5)		
Volume (Å)	1460(3)	1576.7(13)		
Z, Calculated density (g/cm^3)	4, 2.038	4, 2.300		
Absorption coefficient(mm ⁻¹)	0.468	2.446		
F(000)	880	1040		
Theta range for data collection(°)	2.510 - 25.000	2.495 - 24.997		
T 1. Min. 1. H		-16≤h≤15, -10≤k≤12, -		
Limiting indices	-10 <u>≤</u> n <u>≤</u> 10, -11 <u>≤</u> K <u>≤</u> 12, -12 <u>≤</u> I <u>≤</u> 11	13≤l≤13		
Reflections collected / unique	3675 / 1284 [R _{int} =0.0542]	3800 / 1391 [R _{int} =0.1037]		
Completeness to theta	99.70%	99.90%		
Data / restraints / parameters	1284 / 1 / 141	1391 / 1 / 142		
Goodness-of-fit on F_o^2	1.045	0.932		
Final <i>R</i> indices $[F_o^2 > 2(F_c^2)]^a$	$R_1 = 0.0443, wR_2 = 0.0913$	$R_1 = 0.0488, wR_2 = 0.0762$		
<i>R</i> indices (all data) ^a	$R_1 = 0.0652, wR_2 = 0.1014$	$R_1 = 0.0663, wR_2 = 0.0811$		
Largest diff. peak and hole (e·Å ⁻³) 0.277 and - 0.387 1.449 and - 1.445				

Table S1. Crystal data and structure refinement for $KB_{11}O_{16}(OH)_2$ and $CsB_{11}O_{16}(OH)_2$.

^aR₁ = $\Sigma ||F_o|$ - $|F_c||/\Sigma |F_o|$ and $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$.

Atoms	Х	у	Z	U(eq)	BVS
K(1)	5000	2002(1)	2500	34(1)	1.10
B(1)	2241(3)	1252(3)	1758(4)	17(1)	3.05
B(2)	4718(3)	2537(4)	5380(4)	19(1)	3.06
B(3)	3557(3)	4302(4)	4259(4)	21(1)	3.07
B(4)	4049(3)	863(3)	-1004(4)	17(1)	3.08
B(5)	5000	-1453(5)	2500	15(1)	3.09
B(6)	2785(3)	189(4)	98(4)	20(1)	3.05
O(1)	2861(2)	1211(2)	981(2)	21(1)	2.05
O(2)	4321(2)	3445(2)	4410(2)	24(1)	2.15
O(3)	4425(1)	2313(2)	6435(2)	19(1)	1.89
O(4)	1531(2)	292(2)	1645(2)	25(1)	1.99
O(5)	4497(2)	1856(2)	-140(2)	22(1)	2.12
O(6)	3356(2)	76(2)	-707(2)	23(1)	2.08
O(7)	5677(1)	-599(2)	2070(2)	18(1)	2.04
O(8)	2311(2)	2291(2)	2574(2)	25(1)	1.52
O(9)	2923(2)	4233(2)	5001(2)	25(1)	2.02
H(1)	1908(3)	2239(3)	3039(4)	62(15)	0.74

Table S2a. Atomic coordinates ($\times 10^4$), equivalent isotropic displacement parameters (Å² $\times 10^3$) and bond valence sum (BVS) calculations for KB₁₁O₁₆(OH)₂. *U*(eq) is defined as one third of the trace of the orthogonalized *U*_{ij} tensor.

Atoms	Х	у	Z	U(eq)	BVS
Cs(1)	5000	2279(1)	2500	31(1)	1.191
B(1)	2258(6)	1181(8)	1619(7)	24(2)	3.002
B(2)	4734(5)	2594(8)	5518(6)	23(2)	3.069
B(3)	3575(6)	4339(8)	4446(7)	26(2)	3.053
B(4)	4052(5)	934(8)	-1062(7)	23(2)	3.092
B(5)	5000	-1487(11)	2500	22(3)	2.988
B(6)	2787(5)	241(9)	0(7)	29(2)	3.017
O(1)	2887(3)	1184(4)	874(4)	25(1)	2.087
O(2)	4341(3)	3502(5)	4617(4)	29(1)	2.205
O(3)	4424(3)	2359(4)	6493(3)	24(1)	1.855
O(4)	1543(3)	252(5)	1476(4)	29(1)	2.003
O(5)	4484(3)	1911(4)	-286(3)	28(1)	2.144
O(6)	3363(3)	124(5)	-777(4)	32(1)	1.987
O(7)	5672(3)	-651(4)	2069(4)	24(1)	1.996
O(8)	2371(3)	2152(5)	2470(4)	32(1)	1.514
O(9)	2936(3)	4296(5)	5151(4)	36(1)	1.984
H(1)	2130(6)	2030(10)	3080(5)	120(4)	0.733

Table S2b. Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and bond valence sum (BVS) calculations for CsB₁₁O₁₆(OH)₂. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
K(1)-O(1)	3.098(4)	B(3)#3-O(4)	1.370(4)
K(1)-O(1)#1	3.098(4)	B(3)-O(4)#5	1.370(4)
K(1)-O(2)#1	2.887(3)	B(3)-O(9)	1.360(4)
K(1)-O(2)	2.887(3)	B(4)#4-O(7)	1.330(4)
K(1)-O(5)	2.701(4)	B(4)-O(5)	1.385(4)
K(1)-O(5)#1	2.701(4)	B(4)-O(7)#4	1.330(4)
K(1)-O(7)#1	2.878(4)	B(4)-O(6)	1.369(4)
K(1)-O(7)	2.878(4)	B(5)#2-O(3)	1.474(4)
B(1)-O(1)	1.371(4)	B(5)-O(3)#6	1.474(4)
B(1)-O(4)	1.377(4)	B(5)-O(3)#2	1.474(4)
B(1)-O(8)	1.349(4)	B(5)-O(7)#1	1.459(4)
B(2)-O(2)	1.375(4)	B(5)-O(7)	1.459(4)
B(2)-O(3)	1.327(4)	B(6)-O(1)	1.380(4)
B(2)#1-O(5)	1.392(4)	B(6)-O(6)	1.345(4)
B(2)-O(5)#1	1.392(4)	B(6)#5-O(9)	1.373(4)
B(3)-O(2)	1.358(4)	B(6)-O(9)#3	1.373(4)
O(1)-H(1)	0.858(4)	O(7)-K(1)-O(1)#1	61.81(6)
O(5)-K(1)-O(5)#1	173.75(10)	O(2)#1-K(1)-O(1)#1	91.38(9)
O(5)-K(1)-O(7)#1	96.72(7)	O(2)-K(1)-O(1)#1	103.67(9)
O(5)#1-K(1)-O(7)#1	77.50(7)	O(1)-K(1)-O(1)#1	150.12(9)
O(5)-K(1)-O(7)	77.50(6)	O(8)-B(1)-O(1)	118.2(3)
O(5)#1-K(1)-O(7)	96.72(7)	O(8)-B(1)-O(4)	121.3(3)
O(7)#1-K(1)-O(7)	48.27(10)	O(1)-B(1)-O(4)	120.4(3)
O(5)-K(1)-O(2)#1	48.18(8)	O(3)-B(2)-O(2)	126.2(3)
O(5)#1-K(1)-O(2)#1	136.20(8)	O(3)-B(2)-O(5)#1	122.3(3)
O(7)#1-K(1)-O(2)#1	140.16(7)	O(2)-B(2)-O(5)#1	111.5(3)
O(7)-K(1)-O(2)#1	98.86(9)	O(2)-B(3)-O(9)	122.4(3)
O(5)-K(1)-O(2)	136.20(8)	O(2)-B(3)-O(4)#5	117.1(3)
O(5)#1-K(1)-O(2)	48.18(8)	O(9)-B(3)-O(4)#5	120.4(3)
O(7)#1-K(1)-O(2)	98.86(9)	O(7)#4-B(4)-O(6)	119.2(3)
O(7)-K(1)-O(2)	140.16(7)	O(7)#4-B(4)-O(5)	121.5(3)
O(2)#1-K(1)-O(2)	119.33(12)	O(6)-B(4)-O(5)	119.1(3)
O(5)-K(1)-O(1)	61.19(6)	O(7)-B(5)-O(7)#1	107.5(4)

Table S3a. Selected bond lengths (Å) and angles (°) for KB₁₁O₁₆(OH)₂.

O(5)#1-K(1)-O(1)	116.99(7)	O(7)-B(5)-O(3)#6	111.90(13)
O(7)#1-K(1)-O(1)	61.81(6)	O(7)#1-B(5)-O(3)#6	108.91(13)
O(7)-K(1)-O(1)	90.10(8)	O(7)-B(5)-O(3)#2	108.91(13)
O(2)#1-K(1)-O(1)	103.67(9)	O(7)#1-B(5)-O(3)#2	111.90(13)
O(2)-K(1)-O(1)	91.38(9)	O(3)#6-B(5)-O(3)#2	107.7(4)
O(5)-K(1)-O(1)#1	116.99(6)	O(6)-B(6)-O(9)#3	116.9(3)
O(5)#1-K(1)-O(1)#1	61.18(6)	O(6)-B(6)-O(1)	123.8(3)
O(7)#1-K(1)-O(1)#1	90.10(8)	O(9)#3-B(6)-O(1)	119.4(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y, -z+1/2	#2 -x+1, -y, -z+1	#3 -x+1/2, y-1/2, -z+1/2
#4 -x+1, -y, -z	#5 -x+1/2, y+1/2, -z+1/2	#6 x, -y, z-1/2

Table SSD. Selected bolid leng	guis (A) and angles	S() 101 CSB ₁₁ O ₁₆ (OH) _{2.}	
Cs(1)-O(1)	3.253(4)	B(2)-O(3)	1.320(8)
Cs(1)-O(1)#1	3.253(4)	B(2)#1-O(5)	1.395(8)
Cs(1)-O(2)	3.072(4)	B(3)-O(2)	1.353(8)
Cs(1)-O(2)#1	3.072(4)	B(3)#3-O(4)	1.376(8)
Cs(1)-O(5)	3.065(4)	B(3)-O(9)	1.366(9)
Cs(1)-O(5)#1	3.065(4)	B(4)-O(5)	1.359(8)
Cs(1)-O(7)	3.213(5)	B(4)-O(6)	1.384(8)
Cs(1)-O(7)#1	3.213(5)	B(4)#4-O(7)	1.337(8)
Cs(1)-O(8)	3.722(5)	B(5)#2-O(3)	1.499(7)
Cs(1)-O(8)#1	3.722(5)	B(5)-O(7)	1.460(7)
B(1)-O(1)	1.388(8)	B(6)-O(1)	1.360(9)
B(1)-O(4)	1.364(9)	B(6)-O(6)	1.363(8)
B(1)-O(8)	1.361(9)	B(6)#5-O(9)	1.382(9)
B(2)-O(2)	1.378(8)	O(1)-H(1)	0.861(4)
O(5)-Cs(1)-O(5)#1	165.95(17)	O(7)#1-Cs(1)-O(8)	68.31(11)
O(5)-Cs(1)-O(2)	144.96(11)	O(1)-Cs(1)-O(8)	38.65(10)
O(5)#1-Cs(1)-O(2)	43.99(11)	O(1)#1-Cs(1)-O(8)	139.20(11)
O(5)-Cs(1)-O(2)#1	43.99(11)	O(5)-Cs(1)-O(8)#1	87.62(10)
O(5)#1-Cs(1)-O(2)#1	144.96(11)	O(5)#1-Cs(1)-O(8)#1	91.89(10)
O(2)-Cs(1)-O(2)#1	132.13(17)	O(2)-Cs(1)-O(8)#1	121.82(11)
O(5)-Cs(1)-O(7)	74.08(11)	O(2)#1-Cs(1)-O(8)#1	60.07(10)
O(5)#1-Cs(1)-O(7)	92.69(11)	O(7)-Cs(1)-O(8)#1	68.31(11)
O(2)-Cs(1)-O(7)	131.54(11)	O(7)#1-Cs(1)-O(8)#1	107.74(11)
O(2)#1-Cs(1)-O(7)	95.22(11)	O(1)-Cs(1)-O(8)#1	139.20(11)
O(5)-Cs(1)-O(7)#1	92.69(11)	O(1)#1-Cs(1)-O(8)#1	38.65(10)
O(5)#1-Cs(1)-O(7)#1	74.08(11)	O(8)-Cs(1)-O(8)#1	176.00(17)
O(2)-Cs(1)-O(7)#1	95.22(11)	O(8)-B(1)-O(4)	121.8(6)
O(2)#1-Cs(1)-O(7)#1	131.54(11)	O(8)-B(1)-O(1)	117.5(6)
O(7)-Cs(1)-O(7)#1	43.29(14)	O(4)-B(1)-O(1)	120.7(6)
O(5)-Cs(1)-O(1)	56.80(10)	O(3)-B(2)-O(2)	125.8(6)
O(5)#1-Cs(1)-O(1)	117.62(11)	O(3)-B(2)-O(5)#1	122.2(6)
O(2)-Cs(1)-O(1)	98.71(11)	O(2)-B(2)-O(5)#1	112.0(5)
O(2)#1-Cs(1)-O(1)	97.29(11)	O(2)-B(3)-O(9)	122.2(6)
O(7)-Cs(1)-O(1)	81.97(11)	O(2)-B(3)-O(4)#5	117.4(6)
O(7)#1-Cs(1)-O(1)	60.13(11)	O(9)-B(3)-O(4)#5	120.4(6)

Table S3b. Selected bond lengths (Å) and angles (°) for $CsB_{11}O_{16}(OH)_2$

O(5)-Cs(1)-O(1)#1	117.62(11)	O(7)#4-B(4)-O(5)	121.7(6)
O(5)#1-Cs(1)-O(1)#1	56.80(10)	O(7)#4-B(4)-O(6)	117.6(6)
O(2)-Cs(1)-O(1)#1	97.29(11)	O(5)-B(4)-O(6)	120.4(6)
O(2)#1-Cs(1)-O(1)#1	98.71(11)	O(7)#1-B(5)-O(7)	108.5(8)
O(7)-Cs(1)-O(1)#1	60.13(11)	O(7)#1-B(5)-O(3)#6	109.4(2)
O(7)#1-Cs(1)-O(1)#1	81.97(11)	O(7)-B(5)-O(3)#6	111.1(2)
O(1)-Cs(1)-O(1)#1	139.87(16)	O(7)#1-B(5)-O(3)#2	111.1(2)
O(5)-Cs(1)-O(8)	91.89(10)	O(7)-B(5)-O(3)#2	109.4(2)
O(5)#1-Cs(1)-O(8)	87.62(10)	O(3)#6-B(5)-O(3)#2	107.3(7)
O(2)-Cs(1)-O(8)	60.07(10)	O(1)-B(6)-O(6)	124.9(7)
O(2)#1-Cs(1)-O(8)	121.82(11)	O(1)-B(6)-O(9)#3	120.5(6)
O(7)-Cs(1)-O(8)	107.74(11)	O(6)-B(6)-O(9)#3	114.6(7)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y, -z+1/2	#2 -x+1, -y, -z+1
#3 -x+1/2, y-1/2, -z+1/2	#4 -x+1, -y, -z
#5 -x+1/2, y+1/2, -z+1/2	#6 x, -y, z-1/2

No.	Compounds	Space group	B-O anionic framework	Cutoff edge	Reference
1	KB ₁₁ O ₁₆ (OH) ₂ *	C2/c	${}^{2}_{\infty}[B_{11}O_{18}(OH)_{2}]$ layer	195 nm	/
2	K ₂ (B ₅ O ₈ (OH))(H ₂ O) ₂	$Pna2_1$	$^{2}_{\infty}$ [B ₅ O ₁₀ (OH)] layer	/	7
3	$K_2(B_{10}O_{14}(OH)_4) (H_2O)$	$P\bar{1}$	$^{1}\infty$ [B ₅ O ₈ (OH) ₂] chain	/	8
4	KB ₅ O ₇ (OH) ₂ (H ₂ O)	$P2_{1}/c$	$^{1}_{\infty}$ [B ₅ O ₇ (OH) ₂] chain	/	9
5	$K_2(B_6O_9(OH)_2)$	$P2_{1}/c$	$^{1}_{\infty}[B_{6}O_{9}(OH)_{2}]$ chain	/	10
6	KB ₅ O ₇ (OH) ₂	$P2_{1}/c$	$^{1}_{\infty}[B_{5}O_{7}(OH)_{2}]$ chain	/	11
7	K ₄ B ₁₀ O ₁₅ (OH) ₄	C2/c	${}^{1}_{\infty}[B_5O_{10}(OH)_2]$ chain	/	9
8	$K_3B_5O_8(OH)_2$	Fdd2	Isolated [B ₅ O ₈ (OH) ₂]	200 nm	12
9	$K(B_5O_6(OH)_4)(H_2O)_2$	Aba2	Isolated [B ₅ O ₆ (OH) ₄]	/	13
10	KB ₃ O ₄ (OH) ₂	P4/ncc	isolated [B ₁₂ O ₁₆ (OH) ₈]	/	14
11	$K_2(B_4O_5(OH)_4)(H_2O)_2$	$P2_{1}2_{1}2_{1}$	Isolated [B ₄ O ₅ (OH) ₄]	/	15
12	K ₂ (B ₃ O ₃ (OH) ₅)	Ama2	Isolated [B ₃ O ₃ (OH) ₅]	200 nm	16
13	$K_{3}B_{3}O_{4}(OH)_{4}(H_{2}O)_{2}$	$Cmc2_1$	Isolated [B ₃ O ₄ (OH) ₄]	190 nm	17
14	$K(B_5O_8)(H_2O)_4$	Aba2	Isolated [B ₅ O ₈ (OH) ₂]	/	18
15	K ₂ (B ₁₂ (OH) ₁₂)	$P2_{1}/c$	Isolated [BOH]	/	19
16	KB ₃ O ₅ (H ₂ O) ₃	C2/c	Isolated [B ₃ O ₃ (OH) ₄]	/	20
17	$K_2B_4O_5(OH)_4$	Pbcn	isolated [B ₄ O ₅ (OH) ₄]	/	21

Table 4. The hydroxyl potassium borates.

* represents the work

Note: the above compounds are all derived from the Inorganic Crystal Structure Database (ICSD), and all hydroxyl potassium borates except for disordered repetition and other irrational structure are summarized.

No.	Compounds	Space group	B-O anionic framework	Cutoff edge	Reference
1	CsB ₁₁ O ₁₆ (OH) ₂ *	C2/c	${}^{2}_{\infty}[B_{11}O_{18}(OH)_{2}]$ layer	/	/
2	Cs _{0.4} (H ₃ O) _{0.6} B ₃ O ₅	C2/c	${}^{2}_{\infty}[B_{3}O_{7}(H_{3}O)]$ layer	/	22
3	CsB ₇ O ₁₀ (OH) ₂	C2/c	${}^{2}_{\infty}[B_7O_{10}(OH)_2]$ layer	188 nm	23
4	Cs ₂ (B ₄ O ₅ (OH) ₄)(H ₂ O) ₃	$P2_{1}/c$	Isolated [B ₄ O ₅ (OH) ₄]	/	24
5	Cs ₂ (B ₁₂ (OH) ₁₂) (H ₂ O) ₂	$P2_{1}/c$	Isolated [B ₁₂ (OH) ₁₂]	/	25
6	$Cs(B_5O_6(OH)_4)(H_2O)_2$	C2/c	Isolated [B ₅ O ₆ (OH) ₄]	/	26
7	$Cs(B_5O_6(OH)_4)(H_2O)_2$	$P2_{1}/c$	Isolated [B ₅ O ₆ (OH) ₄]	/	27

Table S5. The hydroxyl cesium borates.

* represents the work

Note: the above compounds are all derived from ICSD, and all hydroxyl cesium borates except for disordered repetition and other irrational structure are summarized.

Figure S1. Experimental and calculated XRD patterns of KB₁₁O₁₆(OH)₂.

Figure S2. The coordination environments of the K cations.

Figure S3. The IR spectrum of $KB_{11}O_{16}(OH)_2$.

Figure S4. Calculated electronic band structures based on HSE06 for (a) KBOH, and (b) CBOH.

Figure S5. A $KB_{11}O_{16}(OH)_2$ single crystal under the polarizing microscope (a); The thickness of $KB_{11}O_{16}(OH)_2$ crystal (b).

Figure S6. The Electron localization function (ELF) of $KB_{11}O_{16}(OH)_2$.

Figure S7. The TG/DSC curves for KBOH.

REFRENCES

(1) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, 64, 112-122.

(2) Spek, A. L. Single-crystal structure validation with the program PLATON. *J. Appl. Cryst.* **2003**, 36, 7-13.

(3) Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. *Mater. Res. Bull.* **1970**, *5*, 721-722.

(4) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. *J. Phys.: Condens Matter* 2002, 14, 2717-2744.

(5) Hamann, D. R.; Schlüter, M.; Chiang, C. Norm-conserving pseudopotentials. *Phys. Rev. Lett.* **1979**, 43, 1494

(6) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77, 3865-3868.

(7) Marezio, M. Crystal structure of K₂B₅O₈(OH)·2H₂O. *Acta Crystallogr B* **1969**, B25, 1787-1788.

(8) Gao, Y.-H. Potassium decaborate monohydrate. Acta Crystallogr E 2011, 67, 157-U204.

(9) Zhang, H. X.; Zhang, J.; Zheng, S. T.; Yang, G. Y. Two new potassium borates, $K_4B_{10}O_{15}(OH)_4$ with stepped chain and $KB_5O_7(OH)_2$ ·H₂O with double helical chain. *Cryst. Growth Des.* **2005**, 5, 157-161.

(10) Li, H.-J.; Liu, Z.-H.; Sun, L.-M. Synthesis, crystal structure, vibrational spectroscopy and thermal behavior of the first alkali metal hydrated hexaborate: K₂B₆O₉(OH)₂. *Chin. J. Chem.* **2007**, 25, 1131-1134.

(11) Wu, Q. Potassium pentaborate. Acta Crystallogr E 2011, 67, I67-168.

(12) Ding, F. H.; Nisbet, M. L.; Zhang, W. G.; Halasyamani, P. S.; Chai, L. Y.; Poeppelmeier, K. R. Why some noncentrosymmetric borates do not make good nonlinear optical materials: a case study with K₃B₅O₈(OH)₂. *Inorg. Chem.* **2018**, *57*, 11801-11808.

(13) Ashmore, J. P.; Petch, H. E. Hydrogen positions in potassium pentaborate tetrahydrate as determined by neutron diffraction. *Can. J. Phys.* **1970**, 48, 1091-1092.

(14) Wang, G.-M.; Sun, Y.-Q.; Zheng, S.-T.; Yang, G.-Y. Synthesis and crystal structure of a novel potassium borate with an unprecedented [B₁₂O₁₆(OH)₈]⁴⁻ anion. *Z. Anorg. Allg. Chem.* **2006**, 632, 1586-1590.

(15) Marezio, M.; Zachariasen, W. H.; Plettinger, H. A. The crystal structure of potassium tetraborate tetrahydrate. *Acta Crystallogr.* **1963**, 16, 975-977.

(16) Wang, Q.; Lin, C. S.; Zou, G. H.; Liu, M. H.; Gao, D. J.; Bi, J.; Huang, L. K₂B₃O₃(OH)₅: A new deep-UV nonlinear optical crystal with isolated [B₃O₃(OH)₅]²⁻ anionic groups. *J. Alloys Compd.* **2018**, 735, 677-683.

(17) Liu, Q.; Zhang, X. Y.; Yang, Z. H.; Zhang, F. F.; Liu, L. L.; Han, J.; Li, Z.; Pan, S. L. $K_3B_3O_4(OH)_4$ · $2H_2O$: A UV nonlinear optical crystal with isolated $[B_3O_4(OH)_4]^{3-}$ anion groups. *Inorg. Chem.* **2016**, 55, 8744-8749.

(18) Zachariasen, W. H.; Plettinger, H. A. Refinement of the structure of potassium pentaborate tetrahydrate. *Acta Crystallogr.* **1963**, 16, 376-777.

(19) Peymann, T.; Knobler, C. B.; Khan, S. I.; Hawthorne, M. F. Dodecahydroxy-closo-dodecaborate(2-). J. Am. Chem. Soc. 2001, 123, 2182-2185.

(20) Salentine, C. G. Synthesis, characterization and crystal structure of a new potassium borate, KB₃O₅·3H₂O. *Inorg. Chem.* **1987**, 26, 128-132.

(21) Shi, T. T.; Zhang, F. F.; Tudi, A.; Yang, Z. H.; Pan, S. L. $K_2B_4O_5(OH)_4$ center dot H_2O and $K_2B_4O_5(OH)_4$: two new hydrated potassium borates with isolated $[B_4O_5(OH)_4]^{2-}$ units and different structural frameworks. *New J. Chem.* **2019**, 43, 11660-11665.

(22) Sohr, G.; Neumair, S. C.; Heymann, G.; Wurst, K.; Guenne, J. S. A. D.; Huppertz, H. Oxonium ions substituting cesium ions in the structure of the new high-pressure borate HP-Cs- $x(H_3O)(x)B_3O_5$ (x=0.5-0.7). *Chem. Eur. J.* **2014**, 20, 4316-4323.

(23) Miao, Z. H.; Yang, Y.; Wei, Z. L.; Yang, Z. H.; Pan, S. L. Effect of anion dimensionality on optical properties: the $_{\infty}[B_7O_{10}(OH)_2]$ layer in CsB₇O₁₀(OH)₂ vs. the $_{\infty}[B_7O_{12}]$ framework in CsBaB₇O₁₂. *Dalton Trans.* **2020**, 49, 1292-1299.

(24) Touboul, M.; Penin, N.; Nowogrocki, G. Crystal structure and thermal behavior of $Cs_2B_4O_5(OH)_4$ 3H₂O. *J. Solid State Chem.* **1999**, 143, 260-265.

(25) Peymann, T.; Herzog, A.; Knobler, C. B.; Hawthorne, M. F. Aromatic polyhedral hydroxyborates: Bridging boron oxides and boron hydrides. *Angew. Chem. Int. Ed.* **1999**, 38, 1062-1064.

(26) Penin, N.; Seguin, L.; Gerand, B.; Touboul, M.; Nowogrocki, G. Crystal structure of a new form of $CsB_5O_6(OH)_4$ ·2H₂O and thermal behavior of M $B_5O_6(OH)_4$ ·2H₂O (M = Cs, Rb, Tl). *J. Alloys Compd.* **2002**, 334, 97-109.

(27) Behm, H. Structure determination on a twinned crystal of cesium pentaborate tetrahydrate, $C_8B_5O_6(OH)_4$ ·2H₂O. *Acta Crystallogr Sec C* **1984**, 40, 1114-1116.