A new Zn(II) MOF assembled from metal–organic cubes (MOCs) as an ultimate adsorbent for cationic dyes

Armeen Siddiquea, Mantasha I.b, Ram Niwas Singha*, Poonam Rawata, M. Shahidb*, Shweta Trivedia, Anshu Gautama, Mohd Zeeshanb

aDepartment of Chemistry, University of Lucknow, India
bFunctional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
c†Corresponding authors, E-mail: rsvk.chemistry@gmail.com, shahid81chem@gmail.com

Fig. S1 Various coordination modes of Zn metal atom present in 1.

Fig. S2 Adsorption isotherms of 1 at 77 K up to 1 bar pressure for N\textsubscript{2}
Fig. S3: UV-vis spectra of 1 in liquid and solid state.

Fig. S4: Recyclability plot of 1.
Fig. S5 PXRD patterns of 1 before and after adsorption of MB.

Fig. S6 FTIR spectra of 1 before and after adsorption of MB.
The adsorption kinetics of dye pollutants MB, RB and MO by 1 are represented by (a), (b) and (c), respectively as pseudo-first order kinetics and by (d), (e) and (f), respectively as pseudo-second order kinetics and by (g), (h) and (i), respectively, as intraparticle diffusion.
<table>
<thead>
<tr>
<th>Bond Angle(°)</th>
<th>Bond distance(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3 Zn1 O2</td>
<td>130.5(5)</td>
</tr>
<tr>
<td>N3 Zn1 O2</td>
<td>113.5(4)</td>
</tr>
<tr>
<td>N3 Zn1 O3</td>
<td>92.8(4)</td>
</tr>
<tr>
<td>N5 Zn1 O2</td>
<td>113.7(4)</td>
</tr>
<tr>
<td>N5 Zn1 O3</td>
<td>95.2(4)</td>
</tr>
<tr>
<td>N5 Zn1 N3</td>
<td>107.6(5)</td>
</tr>
<tr>
<td>O8 Zn2 O5</td>
<td>122.7(5)</td>
</tr>
<tr>
<td>N2 Zn2 O5</td>
<td>119.9(5)</td>
</tr>
<tr>
<td>N2 Zn2 O8</td>
<td>99.1(4)</td>
</tr>
<tr>
<td>N4 Zn2 O5</td>
<td>111.6(4)</td>
</tr>
<tr>
<td>N4 Zn2 O8</td>
<td>94.2(4)</td>
</tr>
<tr>
<td>N4 Zn2 N2</td>
<td>105.5(4)</td>
</tr>
<tr>
<td>O10 Zn3 O9</td>
<td>90.8(6)</td>
</tr>
<tr>
<td>O11 Zn3 O9</td>
<td>92.3(6)</td>
</tr>
<tr>
<td>O11 Zn3 O10</td>
<td>176.9(4)</td>
</tr>
<tr>
<td>O13 Zn3 O9</td>
<td>176.3(4)</td>
</tr>
<tr>
<td>O13 Zn3 O10</td>
<td>88.7(5)</td>
</tr>
<tr>
<td>O13 Zn3 O11</td>
<td>88.2(5)</td>
</tr>
<tr>
<td>N1 Zn3 O9</td>
<td>85.1(4)</td>
</tr>
<tr>
<td>N1 Zn3 O10</td>
<td>87.6(4)</td>
</tr>
<tr>
<td>N1 Zn3 O11</td>
<td>92.1(4)</td>
</tr>
<tr>
<td>N1 Zn3 O13</td>
<td>91.2(4)</td>
</tr>
<tr>
<td>N6 Zn3 O9</td>
<td>92.8(4)</td>
</tr>
<tr>
<td>N6 Zn3 O10</td>
<td>90.6(4)</td>
</tr>
<tr>
<td>N6 Zn3 O11</td>
<td>89.9(4)</td>
</tr>
<tr>
<td>N6 Zn3 O13</td>
<td>90.9(4)</td>
</tr>
<tr>
<td>N6 Zn3 N1</td>
<td>177.2(4)</td>
</tr>
</tbody>
</table>