Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Supplementary information

To the manuscript

Copper(I) halide cluster-based coordination polymers modulated by chiral ditopic dithiodianthranilide ligands: synthesis, crystal structure and photoluminescence

By: Jarosław Chojnacki,[†] Michał Mońka,[‡] Illia E. Serdiuk,[‡] Piotr Bojarski,[‡] Tadeusz Połoński,[†]and Teresa Olszewska^{*,†}

[†]Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland [‡]Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland

* Corresponding author. Tel.; +48 58 347 1425; fax: +48 58 347 2694

E-mail address: teresa.olszewska@pg.edu.pl

Table of contents

X-ray crystallography	S2-S82
Additional figures of crystal structure (Figure S1 Figure S10.)	S2-S6
Table S1. Crystal data, data collection and structure refinement details	S7
Crystal data for [Cu ₂ I ₂ (mdta)] _n (1)	S12
Crystal data for $[Cu_5I_5{(R)-(-)-(mdta)}(MeCN)_3]_n$ (2)	S17
Crystal data for [Cu ₂ Br ₂ (mdta)] _n (3)	S24
Crystal data for $[Cu_3Br_3\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (4)	S28
Crystal data for [Cu ₃ Cl ₃ (mdta) ₂ (MeCN) ₂] _n (5)	S36
Crystal data for [Cu ₃ Cl ₄ {(<i>R</i>)-(–)-(mdta)} ₂ (MeCN)] _n (7)	S46
Crystal data for [Cu ₂ l ₂ (bdta)(MeCN)] _n (8)	S55
Crystal data for [Cu ₂ Br ₂ (bdta)] _n (9)	S62
Crystal data for [Ag ₂ I ₂ (mdta)] _n (10)	S68
Crystal data for (bdta)	S73
CD and UV-vis spectra (Figure S11. – Figure S13.)	S81-S82
Fluorescence spectra (Figure S14.)	S82
Table S2. Average lifetimes and fitting parameters of luminescence decays	
of complexes in crystal state at various temperatures	S83
FT-IR spectra (Figure S15 Figure S25.)	S84-S94
¹ H NMR spectrum of (bdta) taken in CDCl₃ (Figure S26.)	S95
¹³ C NMR spectrum of (bdta) taken in CDCl ₃ (Figure S27.)	S96
References	S97

Figure S1. Molecular view and labeling scheme of the repeating unit of $[Cu_2l_2(mdta)]_n$ (1). Hydrogen atoms not labelled, labels given for atoms of asymmetric unit and in some cases for symmetry equivalent (by symmetry centers) atoms.

Figure S2. Molecular view and labeling scheme of the asymmetric unit of $[Cu_{5}I_{5}(R)-(-)-(mdta)](MeCN)_{3}n (2)$. Hydrogen atoms omitted.

Figure S3. Molecular view of the repeating part and labeling scheme of the asymmetric unit of **[Cu₂Br₂(mdta)]**_n (3). Hydrogen atoms are not labelled. Some labels are doubled for equivalent atoms (by symmetry centers).

Figure S4. Molecular view and labeling scheme of the asymmetric unit of [Cu₃Br₃{(*R*)-(–)-(mdta)}₂(MeCN)]_n (4). Some labels are doubled for symmetry equivalent atoms (by a screw rotation).

Figure S5. Molecular view and labeling scheme for the repeating part of structure $[Cu_3Cl_3(mdta)_2(MeCN)_2]_n$ (5). Hydrogen atoms omitted. Some labels are doubled for symmetry equivalent atoms (by a screw rotation or translation). Solvent MeCN molecules are also shown for completeness.

Figure S6. Molecular view and labeling scheme of the repeating unit of $[Cu_3Cl_4(R)-(-)-(mdta)]_2(MeCN)]_n$ (7). Hydrogen atoms omitted. Some labels are doubled for symmetry equivalent atoms (by a screw rotation or translation). Solvent MeCN molecule not drawn. Note topological similarity of $[Cu_3Cl_3(mdta)_2(MeCN)_2]_n$ (5) and $[Cu_3Cl_4(R)-(-)-(mdta)]_2(MeCN)]_n$ (7) and additional Cl2 atom in the Cu₃Cl₄ clusters.

Figure S7. Molecular view and labeling scheme of the asymmetric unit of $[Cu_2l_2(bdta)(MeCN)]_n$ (8). Hydrogen atoms not labelled.

Figure S8. Molecular view of repeating part and labeling scheme of the asymmetric unit of $[Cu_2Br_2(bdta)]_n$ (9). Hydrogen atoms not labelled. Some labels are doubled for symmetry equivalent atoms (by symmetry centers).

Figure S9. Molecular view of the repeating part and labeling scheme of the asymmetric unit of $[Ag_2I_2(mdta)]_n$ (10). Hydrogen atoms not shown. Some labels are doubled for symmetry equivalent atoms (by the symmetry centers).

Figure S10. Molecular view of **5,11-Dibenzyldibenzo**[*b*,*f*][**1,5]diazocine-6,12**(**5***H*,**11***H*)-**dithione** (**bdta**). Displacement ellipsoids drawn at 50% probability level. Only the most important atoms are labelled.

Table S1.

Crystal data, data collection and structure refinement details

	1	2	3	4
Crystal data	·			
Chemical formula	$C_{16}H_{14}Cu_2I_2N_2S_2$	$C_{22}H_{23}Cu_5I_5N_5S_2$	$C_{16}H_{14}Br_2Cu_2N_2S_2$	$\begin{array}{c} C_{32}H_{28}Br_{3}Cu_{3}N_{4}S_{4}\\ \cdot C_{2}H_{3}N\end{array}$
CCDC code	2013594	2013595	2013596	2013597
M _r	679.29	1373.77	585.31	1068.23
Crystal system, space group	Monoclinic, $P2_1/n$	Orthorhombic, $P2_12_12_1$	Monoclinic, $P2_1/n$	Monoclinic, <i>P</i> 2 ₁
Temperature (K)	120	120	120	120
a, b, c (Å)	13.353 (3), 10.6593 (16), 13.978 (3)	10.3178 (4), 15.5879 (11), 21.9885 (8)	13.306 (3), 10.4481 (12), 13.639 (3)	8.7415 (4), 17.1309 (8), 13.1531 (6)
α, β, γ (°)	90, 101.058 (16), 90	90, 90, 90	90, 99.860 (15), 90	90, 95.007 (3), 90
$V(\text{\AA}^3)$	1952.6 (6)	3536.5 (3)	1868.1 (6)	1962.16 (16)
Ζ	4	4	4	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο <i>Κ</i> α
μ (mm ⁻¹)	5.56	7.46	6.78	4.91
Crystal size (mm)	0.48 imes 0.05 imes 0.02	$0.22\times0.08\times0.06$	$0.45 \times 0.31 \times 0.28$	$0.41 \times 0.08 \times 0.05$
	·			
Data collection				
Diffractometer	STOE IPDS 2T	STOE IPDS 2T	STOE IPDS 2T	STOE IPDS 2T
Absorption correction	Integration STOE X-RED32, absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	Integration STOE X-RED32, absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	Integration STOE X-RED32, absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	Integration STOE X-RED32, absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270
T_{\min}, T_{\max}	0.251, 0.797	0.258, 0.501	0.099, 0.207	0.187, 0.535
No. of measured, independent and	25748, 5272, 4599	20418, 9471, 8678	24955, 5043, 4157	19182, 7709, 5814

observed [$I > 2\sigma(I)$] reflections				
R _{int}	0.051	0.028	0.085	0.086
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.688	0.687	0.688	0.617
Refinement				
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.042, 0.110, 1.00	0.025, 0.057, 1.07	0.053, 0.147, 1.06	0.105, 0.293, 1.03
No. of reflections	5272	9471	5043	7709
No. of parameters	219	357	219	447
No. of restraints	0	0	0	1
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0881P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0323P)^{2} + 0.3461P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1022P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1897P)^{2} + 10.6517P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min}$ (e Å ⁻³)	2.95, -1.56	0.59, -0.64	1.49, -1.32	4.18, -1.42
Absolute structure	-	Flack x determined using 3585 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).	_	Classical Flack method preferred over Parsons because s.u. lower.
Absolute structure parameter	_	0.000 (16)	_	0.00 (3)

	5	7	8	9
Crystal data				
Chemical formula	$\begin{array}{c} C_{32}H_{28}Cl_{3}Cu_{3}N_{4}S_{4}\\ \cdot 2(C_{2}H_{3}N)\end{array}$	$\begin{array}{c} C_{32}H_{28}Cl_4Cu_3N_4S_4\\ \cdot C_2H_3N \end{array}$	$C_{28}H_{22}Cu_2I_2N_2S_2$	$C_{28}H_{22}Br_2Cu_2N_2S_2$
CCDC code	2013598	2013599	2013600	2013601
M _r	975.90	970.30	831.47	737.49
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁	Monoclinic, <i>P</i> 2 ₁	Monoclinic, <i>I2/a</i>	Triclinic, P1
Temperature (K)	120	120	120	120
a, b, c (Å)	8.8353 (2), 16.7129 (5), 13.6256 (4)	8.7179 (9), 16.8411 (17), 12.8872 (13)	19.2485 (11), 16.5225 (8), 21.3838 (11)	10.6426 (12), 11.6334 (14), 12.1551 (15)
α, β, γ (°)	90, 99.427 (2), 90	90, 94.018 (8), 90	90, 114.655 (4),	108.021 (9),

			90	107.195 (9), 98.463 (9)
$V(Å^3)$	1984.83 (10)	1887.4 (3)	6180.8 (6)	1319.1 (3)
Ζ	2	2	8	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο <i>Κ</i> α
μ (mm ⁻¹)	2.04	2.21	3.53	4.82
Crystal size (mm)	$0.29 \times 0.11 \times 0.03$	$0.41 \times 0.32 \times 0.16$	$0.45 \times 0.23 \times 0.19$	$0.16 \times 0.09 \times 0.08$
			L.	
Data collection				
Diffractometer	STOE IPDS 2T	STOE IPDS 2T	STOE IPDS 2T	STOE IPDS 2T
Absorption correction	Integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	Multi-scan STOE X-RED32, absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	Integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	Multi-scan STOE LANA, absorption correction by scaling of reflection intensities. J. Koziskova, F. Hahn, J. Richter, J. Kozisek, "Comparison of different absorption corrections on the model structure of tetrakis(µ ₂ - acetato)- diaqua- di-copper(II)", Acta Chimica Slovaca, vol. 9, no. 2, 2016, pp. 136 - 140. Afterwards a spherical absorption correction was performed within STOE LANA.
T_{\min}, T_{\max}	0.656, 0.906	0.105, 0.505	0.175, 0.406	0.293, 0.701
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	10633, 10633, 8879	26594, 10114, 9422	42187, 8343, 7370	12200, 6508, 5508
R _{int}	0 (affected by twinning)	0.033	0.060	0.035
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.688	0.687	0.688	0.686
Refinement				
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S	0.055, 0.165, 1.03	0.039, 0.102, 1.06	0.056, 0.159, 1.09	0.031, 0.082, 1.03
No. of reflections	10633	10114	8343	6508

No. of parameters	476	456	326	325
No. of restraints	1	1	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1092P)^{2} + 2.1782P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0651P)^{2} + 1.3569P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0937P)^{2} + 44.3932P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0535P)^{2} + 0.0582P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rangle_{\text{max}}, \Delta \rangle_{\text{min}}$ (e Å ⁻³)	1.03, -1.20	1.32, -0.81	2.12, -3.30	0.85, -0.83
Absolute structure	Flack x determined using 3638 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).	Classical Flack method preferred over Parsons because s.u. lower.	_	_
Absolute structure parameter	0.016 (12)	0.003 (11)	_	-

	10	bdta
Crystal data		
Chemical formula	$C_{16}H_{14}Ag_2I_2N_2S_2$	$C_{28}H_{22}N_2S_2$
CCDC code	2013602	2013603
M _r	767.95	450.59
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$
Temperature (K)	120	120
a, b, c (Å)	13.3327 (8), 11.2308 (4), 13.8158 (8)	9.3720 (3), 14.5073 (9), 16.6745 (7)
α, β, γ (°)	90, 101.542 (5), 90	90, 98.533 (3), 90
$V(Å^3)$	2026.90 (19)	2242.01 (18)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
μ (mm ⁻¹)	5.19	0.26
Crystal size (mm)	0.22 imes 0.17 imes 0.05	$0.41 \times 0.35 \times 0.22$
Data collection		
Diffractometer	STOE IPDS 2T	STOE IPDS 2T
Absorption correction	Integration STOE X-RED32, absorption correction by Gaussian	none

	integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	
T_{\min}, T_{\max}	0.288, 0.832	_
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24114, 5461, 4861	20437, 4270, 3451
R _{int}	0.020	0.111
$(\sin \theta / \lambda)_{max} (\text{Å}^{-1})$	0.686	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.048, 1.07	0.055, 0.154, 1.15
No. of reflections	5461	4270
No. of parameters	219	289
No. of restraints	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
	$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2 + 1.616P]$ where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0235P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.15, -1.27	0.53, -0.36
Absolute structure	_	_
Absolute structure parameter	_	_

Computer programs: *X-AREA* WinXpose 2.0.22.0 (STOE, 2016), *X-AREA* Recipe 1.33.0.0 (STOE, 2015), *X-AREA* Integrate 1.72.0.0 (STOE, 2018) *X-AREA X-RED32* 1.63.4.0 (STOE, 2017), *X-AREA* Integrate 1.72.0.0 (STOE, 2018) *X-AREA* LANA 1.71.6.0 (STOE, 2017), ShelXT (Sheldrick, 2015), SHELXT 2018/2 (Sheldrick, 2018), *SHELXL* (Sheldrick, 2015), Olex2 (Dolomanov *et al.*, 2009).

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920–925].

Computing details

For all compounds, data collection: *X-AREA* WinXpose 2.0.22.0 (STOE, 2016); cell refinement: *X-AREA* Recipe 1.33.0.0 (STOE, 2015). Data reduction: *X-AREA* Integrate 1.72.0.0 (STOE, 2018) *X-AREA X-RED32* 1.63.4.0 (STOE, 2017) for (1), (2), (3), (4), (5), (7), (8), (10), bdta; *X-AREA* Integrate 1.72.0.0 (STOE, 2018) *X-AREA* LANA 1.71.6.0 (STOE, 2017) for (9). Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for (1), (2), (4), (5), (7), (8), (9), (10), bdta; SHELXT 2018/2 (Sheldrick, 2018) for (3). For all compounds, program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

Crystal data for $[Cu_2I_2(mdta)]_n(1)$

$C_{16}H_{14}Cu_2I_2N_2S_2$	F(000) = 1280
$M_r = 679.29$	$D_{\rm x} = 2.311 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 13.353 (3) Å	Cell parameters from 35699 reflections
<i>b</i> = 10.6593 (16) Å	$\theta = 2.4 - 29.7^{\circ}$
c = 13.978 (3) Å	$\mu = 5.56 \text{ mm}^{-1}$
$\beta = 101.058 \ (16)^{\circ}$	T = 120 K
V = 1952.6 (6) Å ³	Plate, yellow
Z = 4	$0.48 \times 0.05 \times 0.02 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	5272 independent reflections
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus	4599 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.051$
rotation method, ω scans	$\theta_{max} = 29.3^{\circ}, \ \theta_{min} = 2.4^{\circ}$
Absorption correction: integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	$h = -18 \rightarrow 18$
$T_{\min} = 0.251, T_{\max} = 0.797$	$k = -14 \rightarrow 14$
25748 measured reflections	<i>l</i> = −19→19

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
	direct methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.110$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0881P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5272 reflections	$(\Delta/\sigma)_{max} = 0.005$
219 parameters	Δ _{max} = 2.95 e Å ⁻³
0 restraints	$\Delta \rangle_{\rm min} = -1.56 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for $[Cu_2I_2(mdta)]_n$ (1)

	x	У	z	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.12698 (2)	0.99084 (2)	0.61842 (2)	0.01609 (9)
I2	0.15630 (2)	0.82912 (2)	0.34273 (2)	0.02588 (9)
Cu1	0.13278 (4)	0.79052 (4)	0.51552 (3)	0.01930 (12)
Cu2	0.08335 (4)	0.02447 (4)	0.42459 (4)	0.02125 (12)
S1	0.10328 (7)	0.60986 (8)	0.58649 (7)	0.01732 (18)
S2	0.09882 (6)	0.21179 (8)	0.34880 (6)	0.01568 (17)
N1	0.1913 (2)	0.3877 (3)	0.6037 (2)	0.0138 (5)
N2	0.2082 (2)	0.4196 (3)	0.3782 (2)	0.0123 (5)
C1	0.1931 (3)	0.5047 (3)	0.5714 (2)	0.0140 (6)
C2	0.2788 (3)	0.5428 (3)	0.5245 (2)	0.0138 (6)
C3	0.3523 (3)	0.6252 (3)	0.5737 (3)	0.0200 (7)
Н3	0.348000	0.653621	0.637153	0.024*
C4	0.4315 (3)	0.6656 (4)	0.5301 (3)	0.0232 (8)
H4	0.482768	0.719322	0.564597	0.028*
C5	0.4359 (3)	0.6274 (4)	0.4363 (3)	0.0224 (7)
Н5	0.488500	0.658313	0.405617	0.027*
C6	0.3640 (3)	0.5446 (4)	0.3867 (3)	0.0183 (7)
Н6	0.367839	0.517740	0.322740	0.022*
C7	0.2866 (3)	0.5014 (3)	0.4317 (3)	0.0133 (6)
C8	0.1421 (3)	0.4727 (3)	0.2912 (3)	0.0176 (7)
H8A	0.074504	0.490221	0.305700	0.026*

H8B	0.135549	0.412421	0.237433	0.026*
H8C	0.172204	0.550662	0.272675	0.026*
C9	0.1935 (2)	0.3034 (3)	0.4072 (2)	0.0117 (6)
C10	0.2659 (2)	0.2530 (3)	0.4931 (2)	0.0114 (6)
C11	0.3302 (3)	0.1543 (3)	0.4802 (3)	0.0163 (6)
H11	0.330761	0.123136	0.416652	0.020*
C12	0.3934 (3)	0.1014 (3)	0.5604 (3)	0.0186 (7)
H12	0.437265	0.034086	0.551197	0.022*
C13	0.3936 (3)	0.1455 (3)	0.6539 (3)	0.0181 (7)
H13	0.438160	0.109582	0.708085	0.022*
C14	0.3286 (2)	0.2419 (3)	0.6679 (2)	0.0161 (6)
H14	0.327284	0.271164	0.731846	0.019*
C15	0.2652 (2)	0.2959 (3)	0.5877 (2)	0.0124 (6)
C16	0.1135 (3)	0.3485 (4)	0.6581 (3)	0.0199 (7)
H16A	0.121911	0.395757	0.719255	0.030*
H16B	0.120906	0.258601	0.672516	0.030*
H16C	0.045638	0.364764	0.619049	0.030*

Atomic displacement parameters $({\mbox{\AA}}^2)$ for $[Cu_2I_2(mdta)]_n$ (1)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01571 (13)	0.01177 (13)	0.01991 (14)	-0.00209 (7)	0.00117 (9)	0.00088 (8)
I2	0.03855 (17)	0.01550 (15)	0.02838 (15)	0.00570 (9)	0.01843 (12)	0.00584 (9)
Cu1	0.0212 (2)	0.0140 (2)	0.0235 (2)	0.00038 (16)	0.00610 (18)	0.00289 (17)
Cu2	0.0246 (3)	0.0139 (2)	0.0243 (2)	-0.00224 (17)	0.00252 (19)	0.00209 (17)
S1	0.0214 (4)	0.0121 (4)	0.0205 (4)	0.0028 (3)	0.0091 (3)	0.0016 (3)
S2	0.0142 (4)	0.0123 (4)	0.0180 (4)	-0.0028 (3)	-0.0034 (3)	0.0004 (3)
N1	0.0146 (13)	0.0118 (13)	0.0152 (12)	-0.0002 (10)	0.0035 (10)	-0.0010 (10)
N2	0.0120 (12)	0.0100 (12)	0.0138 (12)	-0.0009 (9)	-0.0004 (10)	-0.0005 (10)
C1	0.0172 (16)	0.0124 (15)	0.0120 (14)	-0.0025 (11)	0.0022 (12)	-0.0012 (11)
C2	0.0159 (15)	0.0113 (15)	0.0146 (14)	0.0003 (12)	0.0038 (12)	0.0021 (12)
C3	0.0212 (17)	0.0182 (17)	0.0195 (16)	-0.0037 (13)	0.0012 (14)	-0.0061 (14)
C4	0.0193 (18)	0.0245 (19)	0.0255 (19)	-0.0089 (14)	0.0034 (14)	-0.0037 (15)
C5	0.0180 (17)	0.0223 (18)	0.0288 (19)	-0.0079 (14)	0.0090 (14)	-0.0046 (15)
C6	0.0159 (16)	0.0206 (18)	0.0192 (16)	-0.0038 (13)	0.0053 (13)	0.0013 (14)
C7	0.0123 (15)	0.0120 (15)	0.0144 (15)	-0.0029 (10)	-0.0003 (12)	-0.0005 (11)
C8	0.0183 (16)	0.0153 (16)	0.0164 (15)	0.0006 (12)	-0.0038 (13)	0.0045 (13)
С9	0.0110 (14)	0.0126 (14)	0.0105 (13)	-0.0003 (11)	-0.0004 (11)	-0.0027 (11)
C10	0.0094 (13)	0.0102 (14)	0.0136 (14)	-0.0011 (11)	-0.0007 (11)	-0.0005 (12)
C11	0.0149 (15)	0.0146 (16)	0.0196 (16)	-0.0010 (12)	0.0036 (12)	-0.0007 (13)

C12	0.0156 (16)	0.0182 (17)	0.0220 (17)	0.0032 (12)	0.0031 (13)	0.0019 (14)
C13	0.0156 (16)	0.0159 (16)	0.0199 (16)	0.0017 (12)	-0.0037 (13)	0.0035 (13)
C14	0.0130 (15)	0.0191 (17)	0.0150 (15)	-0.0024 (12)	-0.0004 (12)	0.0003 (13)
C15	0.0130 (14)	0.0084 (14)	0.0156 (14)	-0.0003 (11)	0.0021 (11)	-0.0006 (12)
C16	0.0228 (18)	0.0169 (17)	0.0229 (17)	0.0003 (13)	0.0121 (14)	0.0026 (14)

Geometric parameters (Å, °) for $[Cu_2I_2(mdta)]_n$ (1)

I1—Cu1	2.5840 (6)	C4—C5	1.384 (5)	
I1—Cu2 ⁱ	2.7620 (8)	С5—Н5	0.9500	
I1—Cu2 ⁱⁱ	2.6838 (8)	C5—C6	1.388 (5)	
I2—Cu1	2.5283 (7)	С6—Н6	0.9500	
I2—Cu2 ⁱⁱ	2.6498 (6)	C6—C7	1.387 (5)	
Cu1—Cu2 ⁱⁱ	2.8192 (7)	C8—H8A	0.9800	
Cu1—S1	2.2357 (10)	C8—H8B	0.9800	
Cu2—S2	2.2881 (10)	C8—H8C	0.9800	
S1—C1	1.685 (4)	C9—C10	1.490 (4)	
S2—C9	1.680 (3)	C10-C11	1.391 (5)	
N1—C1	1.328 (4)	C10—C15	1.401 (4)	
N1—C15	1.437 (4)	C11—H11	0.9500	
N1—C16	1.462 (4)	C11—C12	1.387 (5)	
N2—C7	1.454 (4)	C12—H12	0.9500	
N2—C8	1.471 (4)	C12—C13	1.389 (5)	
N2—C9	1.330 (4)	С13—Н13	0.9500	
C1—C2	1.480 (5)	C13—C14	1.382 (5)	
C2—C3	1.396 (5)	C14—H14	0.9500	
C2—C7	1.393 (5)	C14—C15	1.393 (4)	
С3—Н3	0.9500	C16—H16A	0.9800	
C3—C4	1.387 (5)	C16—H16B	0.9800	
C4—H4	0.9500	C16—H16C	0.9800	
Cu1—I1—Cu2 ⁱⁱ	64.678 (17)	C4—C5—C6	120.6 (3)	
Cu1—I1—Cu2 ⁱ	88.154 (18)	С6—С5—Н5	119.7	
Cu2 ⁱⁱ —I1—Cu2 ⁱ	76.90 (2)	С5—С6—Н6	120.4	
Cu1—I2—Cu2 ⁱⁱ	65.925 (18)	C5—C6—C7	119.3 (3)	
I1—Cu1—Cu2 ⁱⁱ	59.37 (2)	С7—С6—Н6	120.4	
I2—Cu1—I1	114.82 (2)	C2—C7—N2	119.6 (3)	
I2—Cu1—Cu2 ⁱⁱ	59.110 (16)	C6—C7—N2	119.5 (3)	
S1—Cu1—I1	115.98 (3)	C6—C7—C2	120.8 (3)	
S1—Cu1—I2	128.97 (3)	N2—C8—H8A	109.5	
S1—Cu1—Cu2 ⁱⁱ	156.36 (3)	N2—C8—H8B	109.5	

I1 ⁱⁱⁱ —Cu2—I1 ⁱ	103.10 (2)	N2—C8—H8C	109.5
I1 ⁱⁱⁱ —Cu2—Cu1 ⁱⁱⁱ	55.946 (15)	H8A—C8—H8B	109.5
I1 ⁱ —Cu2—Cu1 ⁱⁱⁱ	100.73 (2)	H8A—C8—H8C	109.5
I2 ⁱⁱⁱ —Cu2—I1 ⁱ	107.59 (2)	H8B—C8—H8C	109.5
I2 ⁱⁱⁱ —Cu2—I1 ⁱⁱⁱ	107.72 (2)	N2—C9—S2	122.3 (2)
I2 ⁱⁱⁱ —Cu2—Cu1 ⁱⁱⁱ	54.965 (18)	N2-C9-C10	118.1 (3)
S2—Cu2—I1 ⁱ	97.42 (3)	C10—C9—S2	119.6 (2)
S2—Cu2—I1 ⁱⁱⁱ	124.23 (3)	C11—C10—C9	119.3 (3)
S2—Cu2—I2 ⁱⁱⁱ	114.36 (3)	C11—C10—C15	119.0 (3)
S2—Cu2—Cu1 ⁱⁱⁱ	161.17 (3)	C15—C10—C9	121.5 (3)
C1—S1—Cu1	109.10 (12)	C10-C11-H11	120.1
C9—S2—Cu2	114.11 (12)	C12—C11—C10	119.9 (3)
C1—N1—C15	122.0 (3)	C12—C11—H11	120.1
C1—N1—C16	120.4 (3)	C11—C12—H12	119.6
C15—N1—C16	117.6 (3)	C11—C12—C13	120.9 (3)
C7—N2—C8	117.0 (3)	C13—C12—H12	119.6
C9—N2—C7	122.3 (3)	С12—С13—Н13	120.1
C9—N2—C8	120.7 (3)	C14—C13—C12	119.8 (3)
N1—C1—S1	121.5 (3)	C14—C13—H13	120.1
N1—C1—C2	118.3 (3)	C13—C14—H14	120.2
C2—C1—S1	120.2 (2)	C13—C14—C15	119.6 (3)
C3—C2—C1	119.0 (3)	C15—C14—H14	120.2
C7—C2—C1	121.8 (3)	C10—C15—N1	119.9 (3)
C7—C2—C3	119.1 (3)	C14—C15—N1	119.1 (3)
С2—С3—Н3	119.9	C14—C15—C10	120.8 (3)
C4—C3—C2	120.2 (3)	N1—C16—H16A	109.5
С4—С3—Н3	119.9	N1—C16—H16B	109.5
C3—C4—H4	120.0	N1—C16—H16C	109.5
C5—C4—C3	119.9 (3)	H16A—C16—H16B	109.5
C5—C4—H4	120.0	H16A—C16—H16C	109.5
C4—C5—H5	119.7	H16B—C16—H16C	109.5
Cu1—S1—C1—N1	-177.6 (2)	C7—N2—C9—C10	-5.0 (5)
Cu1—S1—C1—C2	4.7 (3)	C7—C2—C3—C4	0.4 (5)
Cu2—S2—C9—N2	-174.2 (2)	C8—N2—C7—C2	111.5 (4)
Cu2—S2—C9—C10	7.4 (3)	C8—N2—C7—C6	-63.7 (4)
S1—C1—C2—C3	68.8 (4)	C8—N2—C9—S2	-1.2 (5)
S1—C1—C2—C7	-109.5 (3)	C8—N2—C9—C10	177.3 (3)
S2—C9—C10—C11	65.2 (4)	C9—N2—C7—C2	-66.4 (4)
S2—C9—C10—C15	-109.7 (3)	C9—N2—C7—C6	118.4 (4)

N1—C1—C2—C3	-109.0 (4)	C9—C10—C11—C12	-176.1 (3)
N1—C1—C2—C7	72.8 (4)	C9—C10—C15—N1	2.0 (5)
N2-C9-C10-C11	-113.3 (4)	C9—C10—C15—C14	175.7 (3)
N2—C9—C10—C15	71.8 (4)	C10—C11—C12—C13	0.1 (5)
C1—N1—C15—C10	-67.5 (4)	C11—C10—C15—N1	-172.9 (3)
C1—N1—C15—C14	118.7 (4)	C11—C10—C15—C14	0.8 (5)
C1—C2—C3—C4	-177.9 (3)	C11—C12—C13—C14	1.2 (5)
C1—C2—C7—N2	0.8 (5)	C12—C13—C14—C15	-1.4 (5)
C1—C2—C7—C6	175.9 (3)	C13—C14—C15—N1	174.2 (3)
C2—C3—C4—C5	2.2 (6)	C13—C14—C15—C10	0.5 (5)
C3—C2—C7—N2	-177.5 (3)	C15—N1—C1—S1	177.4 (2)
C3—C2—C7—C6	-2.3 (5)	C15—N1—C1—C2	-4.8 (5)
C3—C4—C5—C6	-2.8 (6)	C15—C10—C11—C12	-1.1 (5)
C4—C5—C6—C7	0.9 (6)	C16—N1—C1—S1	-3.2 (5)
C5—C6—C7—N2	176.9 (3)	C16—N1—C1—C2	174.6 (3)
C5—C6—C7—C2	1.7 (5)	C16—N1—C15—C10	113.1 (4)
C7—N2—C9—S2	176.6 (3)	C16—N1—C15—C14	-60.7 (4)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) x, y-1, z.

Crystal data for $[Cu_5I_5\{(R)-(-)-(mdta)\}(MeCN)_3]_n$ (2)

$C_{22}H_{23}Cu_5I_5N_5S_2$	$D_{\rm x} = 2.580 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 1373.77$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 8622 reflections
a = 10.3178 (4) Å	$\theta = 2.2 - 29.6^{\circ}$
<i>b</i> = 15.5879 (11) Å	$\mu = 7.46 \text{ mm}^{-1}$
<i>c</i> = 21.9885 (8) Å	T = 120 K
V = 3536.5(3) Å ³	Prism, yellow
Z = 4	$0.22 \times 0.08 \times 0.06 \text{ mm}$
F(000) = 2528	

Data collection

STOE IPDS 2T diffractometer	8678 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.028$
rotation method, ω scans	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction	$h = -14 \rightarrow 14$

in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	
$T_{\min} = 0.258, T_{\max} = 0.501$	$k = -17 \rightarrow 21$
20418 measured reflections	<i>l</i> = -27→30
9471 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.057$	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 0.3461P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} = 0.001$
9471 reflections	$\Delta \rangle_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
357 parameters	$\Delta \rangle_{\rm min} = -0.64$ e Å ⁻³
0 restraints	Absolute structure: Flack x determined using 3585 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Primary atom site location: structure-invariant direct methods	Absolute structure parameter: 0.000 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters

$(Å^2)$ for $[Cu_5I_5\{(R)-(-)-(mdta)\}(MeCN)_3]_n$ (2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.59768 (4)	0.21758 (3)	0.26415 (2)	0.02147 (9)
I2	0.71918 (4)	0.49008 (2)	0.25937 (2)	0.01630 (8)
I3	0.56265 (4)	0.37499 (2)	0.42733 (2)	0.01720 (8)
I4	0.86535 (4)	0.57849 (3)	0.43598 (2)	0.02386 (9)
15	0.94585 (4)	0.31576 (2)	0.36841 (2)	0.01848 (8)
Cu1	0.54781 (7)	0.37680 (5)	0.29914 (3)	0.02033 (15)
Cu2	0.66236 (8)	0.51822 (5)	0.37611 (4)	0.02271 (16)
Cu3	0.70471 (8)	0.25615 (5)	0.37001 (4)	0.02565 (17)

Cu4	0.82108 (8)	0.41564 (5)	0.44393 (3)	0.02331 (17)
Cu5	-0.20413 (7)	0.33294 (5)	0.26739 (3)	0.02026 (15)
S 1	0.34593 (14)	0.43635 (11)	0.30651 (6)	0.0186 (3)
S2	-0.07396 (14)	0.26026 (9)	0.20079 (7)	0.0171 (3)
N1	0.1496 (4)	0.4811 (3)	0.2368 (2)	0.0137 (9)
N2	0.1736 (5)	0.2949 (3)	0.1842 (2)	0.0137 (9)
N3	0.5164 (6)	0.5995 (4)	0.3895 (3)	0.0252 (12)
N4	0.8406 (5)	0.3708 (4)	0.5278 (2)	0.0247 (12)
N5	0.7002 (6)	0.1590 (4)	0.4287 (3)	0.0291 (13)
C1	0.2664 (5)	0.4459 (4)	0.2406 (3)	0.0146 (10)
C2	0.3247 (5)	0.4147 (4)	0.1824 (2)	0.0146 (11)
C3	0.4276 (6)	0.4589 (4)	0.1551 (3)	0.0183 (12)
Н3	0.460348	0.510001	0.172960	0.022*
C4	0.4811 (6)	0.4274 (5)	0.1019 (3)	0.0243 (14)
H4	0.549956	0.457778	0.082978	0.029*
C5	0.4365 (7)	0.3530 (4)	0.0761 (3)	0.0264 (14)
Н5	0.476191	0.331549	0.040234	0.032*
C6	0.3332 (6)	0.3085 (4)	0.1023 (3)	0.0205 (12)
H6	0.300958	0.257562	0.084093	0.025*
C7	0.2783 (6)	0.3404 (4)	0.1556 (2)	0.0148 (10)
C8	0.2058 (6)	0.2118 (4)	0.2115 (3)	0.0188 (12)
H8A	0.147716	0.200725	0.245840	0.028*
H8B	0.295715	0.212767	0.225807	0.028*
H8C	0.195483	0.166487	0.180990	0.028*
С9	0.0516 (6)	0.3225 (4)	0.1803 (2)	0.0131 (10)
C10	0.0287 (5)	0.4096 (4)	0.1547 (2)	0.0133 (10)
C11	-0.0468 (6)	0.4158 (4)	0.1014 (3)	0.0194 (11)
H11	-0.081801	0.365422	0.083474	0.023*
C12	-0.0700 (6)	0.4947 (4)	0.0752 (3)	0.0229 (12)
H12	-0.120764	0.498629	0.039303	0.027*
C13	-0.0193 (6)	0.5681 (4)	0.1012 (3)	0.0211 (12)
H13	-0.033879	0.622154	0.082425	0.025*
C14	0.0522 (6)	0.5638 (4)	0.1543 (3)	0.0183 (11)
H14	0.083786	0.614743	0.172730	0.022*
C15	0.0779 (5)	0.4841 (4)	0.1805 (2)	0.0130 (10)
C16	0.0901 (6)	0.5224 (4)	0.2902 (3)	0.0194 (12)
H16A	0.073045	0.479154	0.321514	0.029*
H16B	0.008462	0.549723	0.278202	0.029*
H16C	0.149314	0.565976	0.306415	0.029*
C17	0.4278 (7)	0.6393 (4)	0.3998 (3)	0.0267 (14)

C18	0.3110 (8)	0.6897 (6)	0.4136 (4)	0.043 (2)
H18A	0.308117	0.740264	0.387122	0.064*
H18B	0.313215	0.708007	0.456175	0.064*
H18C	0.233890	0.654372	0.406518	0.064*
C19	0.8251 (6)	0.3390 (4)	0.5739 (3)	0.0230 (13)
C20	0.8007 (6)	0.3014 (5)	0.6333 (3)	0.0294 (15)
H20A	0.718558	0.269838	0.632347	0.044*
H20B	0.795759	0.346993	0.663861	0.044*
H20C	0.871319	0.261985	0.643656	0.044*
C21	0.7015 (7)	0.1098 (5)	0.4659 (3)	0.0294 (15)
C22	0.7066 (8)	0.0459 (6)	0.5148 (4)	0.042 (2)
H22A	0.761235	-0.002330	0.502164	0.063*
H22B	0.618862	0.025148	0.523481	0.063*
H22C	0.743124	0.072191	0.551498	0.063*

Atomic displacement parameters (A^2) for $[Cu_5I_5\{(R)-(-)-(mdta)\}(MeCN)_3]_n$ (2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01729 (16)	0.02011 (19)	0.02700 (19)	-0.00484 (14)	0.00588 (15)	-0.00578 (16)
I2	0.01650 (17)	0.01407 (17)	0.01833 (16)	-0.00090 (13)	-0.00173 (14)	0.00114 (13)
I3	0.01749 (16)	0.02035 (18)	0.01376 (15)	0.00171 (14)	-0.00029 (14)	-0.00061 (14)
I4	0.0287 (2)	0.0207 (2)	0.02219 (18)	0.00027 (16)	-0.01072 (16)	-0.00106 (15)
15	0.01735 (16)	0.01677 (17)	0.02134 (17)	0.00264 (14)	-0.00090 (15)	-0.00046 (14)
Cu1	0.0143 (3)	0.0216 (4)	0.0251 (4)	0.0011 (3)	0.0002 (3)	0.0017 (3)
Cu2	0.0235 (4)	0.0210 (4)	0.0237 (4)	0.0032 (3)	-0.0042 (3)	-0.0007 (3)
Cu3	0.0261 (4)	0.0224 (4)	0.0285 (4)	0.0001 (3)	0.0056 (3)	0.0032 (3)
Cu4	0.0278 (4)	0.0251 (4)	0.0171 (3)	0.0048 (3)	-0.0001 (3)	0.0026 (3)
Cu5	0.0182 (3)	0.0184 (4)	0.0242 (4)	0.0010 (3)	0.0056 (3)	-0.0001 (3)
S1	0.0149 (6)	0.0269 (8)	0.0140 (6)	0.0038 (6)	-0.0032 (5)	-0.0011 (6)
S2	0.0156 (6)	0.0127 (7)	0.0229 (7)	-0.0025 (5)	0.0055 (5)	-0.0016 (5)
N1	0.012 (2)	0.015 (2)	0.014 (2)	-0.0026 (18)	-0.0010 (18)	0.0011 (18)
N2	0.015 (2)	0.013 (2)	0.013 (2)	0.0009 (18)	-0.0028 (17)	0.0010 (17)
N3	0.026 (3)	0.019 (3)	0.030 (3)	0.006 (2)	-0.006 (2)	-0.001 (2)
N4	0.025 (3)	0.030 (3)	0.019 (2)	0.004 (2)	0.000 (2)	0.001 (2)
N5	0.028 (3)	0.024 (3)	0.035 (3)	0.003 (2)	0.012 (3)	0.008 (3)
C1	0.013 (2)	0.013 (3)	0.018 (2)	-0.001 (2)	-0.001 (2)	0.000 (2)
C2	0.015 (2)	0.015 (3)	0.014 (2)	0.004 (2)	-0.001 (2)	0.003 (2)
C3	0.016 (3)	0.020 (3)	0.018 (3)	-0.001 (2)	-0.003 (2)	-0.001 (2)
C4	0.019 (3)	0.032 (4)	0.023 (3)	-0.005 (3)	0.003 (2)	0.006 (3)
C5	0.027 (3)	0.029 (3)	0.023 (3)	0.001 (3)	0.011 (3)	-0.001 (3)
C6	0.023 (3)	0.018 (3)	0.021 (3)	0.001 (2)	0.006 (2)	-0.002 (2)

C7	0.013 (2)	0.015 (3)	0.016 (2)	-0.001 (2)	-0.001 (2)	0.000 (2)
C8	0.026 (3)	0.011 (3)	0.019 (3)	0.005 (2)	-0.002 (2)	0.006 (2)
C9	0.016 (2)	0.012 (2)	0.011 (2)	-0.003 (2)	0.003 (2)	-0.0031 (19)
C10	0.011 (2)	0.013 (3)	0.017 (2)	-0.0017 (19)	0.001 (2)	0.001 (2)
C11	0.019 (3)	0.017 (3)	0.022 (3)	-0.004 (2)	-0.004 (2)	0.001 (2)
C12	0.021 (3)	0.028 (3)	0.019 (3)	0.000 (3)	-0.006 (2)	0.006 (2)
C13	0.016 (3)	0.021 (3)	0.027 (3)	0.004 (2)	-0.003 (2)	0.008 (2)
C14	0.018 (3)	0.015 (3)	0.022 (3)	-0.002 (2)	-0.001 (2)	0.002 (2)
C15	0.012 (2)	0.013 (3)	0.014 (2)	0.000 (2)	-0.002 (2)	0.0013 (19)
C16	0.016 (3)	0.022 (3)	0.021 (3)	0.001 (2)	-0.001 (2)	-0.004 (2)
C17	0.031 (4)	0.023 (3)	0.026 (3)	0.001 (3)	-0.005 (3)	-0.001 (3)
C18	0.031 (4)	0.050 (5)	0.047 (5)	0.018 (4)	-0.003 (3)	-0.006 (4)
C19	0.018 (3)	0.029 (3)	0.022 (3)	0.005 (2)	-0.007 (2)	-0.001 (3)
C20	0.021 (3)	0.043 (4)	0.025 (3)	0.004 (3)	0.003 (3)	0.010 (3)
C21	0.022 (3)	0.028 (4)	0.038 (4)	-0.003 (3)	0.001 (3)	0.000 (3)
C22	0.039 (4)	0.048 (5)	0.040 (4)	-0.016 (4)	-0.010 (4)	0.020 (4)

Geometric parameters (Å, °) for $[Cu_5I_5\{(R)-(-)-(mdta)\}(MeCN)_3]_n$ (2)

I1—Cu1	2.6489 (9)	C2—C7	1.384 (8)
I1—Cu3	2.6454 (10)	С3—Н3	0.9500
I1—Cu5 ⁱ	2.7240 (8)	C3—C4	1.384 (9)
I2—Cu1	2.6474 (9)	C4—H4	0.9500
I2—Cu2	2.6695 (9)	C4—C5	1.370 (10)
I2—Cu5 ⁱ	2.5801 (9)	С5—Н5	0.9500
I3—Cu1	2.8231 (8)	C5—C6	1.395 (9)
I3—Cu2	2.7039 (9)	С6—Н6	0.9500
I3—Cu3	2.6775 (9)	C6—C7	1.395 (8)
I3—Cu4	2.7648 (9)	C8—H8A	0.9800
I4—Cu2	2.6462 (9)	C8—H8B	0.9800
I4—Cu4	2.5853 (10)	C8—H8C	0.9800
I5—Cu3	2.6561 (9)	C9—C10	1.489 (8)
I5—Cu4	2.6151 (9)	C10—C11	1.410 (8)
I5—Cu5 ⁱ	2.7205 (9)	C10—C15	1.388 (8)
Cu1—Cu2	3.0201 (11)	C11—H11	0.9500
Cu1—Cu3	2.9302 (11)	C11—C12	1.379 (9)
Cu1—Cu5 ⁱ	2.7396 (11)	С12—Н12	0.9500
Cu1—S1	2.2862 (17)	C12—C13	1.381 (9)
Cu2—Cu4	2.7317 (11)	С13—Н13	0.9500
Cu2—N3	1.990 (6)	C13—C14	1.382 (8)
Cu3—Cu5 ⁱ	2.7219 (11)	C14—H14	0.9500

Cu3—N5	1.991 (6)	C14—C15	1.395 (8)
Cu4—N4	1.982 (5)	C16—H16A	0.9800
Cu5—S2	2.2873 (16)	C16—H16B	0.9800
S1—C1	1.672 (6)	C16—H16C	0.9800
S2—C9	1.680 (6)	C17—C18	1.469 (10)
N1—C1	1.327 (7)	C18—H18A	0.9800
N1—C15	1.443 (7)	C18—H18B	0.9800
N1—C16	1.473 (7)	C18—H18C	0.9800
N2—C7	1.437 (7)	C19—C20	1.453 (9)
N2—C8	1.464 (7)	C20—H20A	0.9800
N2—C9	1.333 (7)	C20—H20B	0.9800
N3—C17	1.129 (9)	C20—H20C	0.9800
N4—C19	1.139 (8)	C21—C22	1.466 (10)
N5—C21	1.122 (9)	C22—H22A	0.9800
C1—C2	1.496 (8)	C22—H22B	0.9800
C2—C3	1.400 (8)	C22—H22C	0.9800
Cu1—I1—Cu5 ⁱ	61.29 (2)	S2—Cu5—I5 ⁱⁱ	98.05 (5)
Cu3—I1—Cu1	67.21 (3)	S2—Cu5—Cu1 ⁱⁱ	146.65 (5)
Cu3—I1—Cu5 ⁱ	60.90 (3)	S2—Cu5—Cu3 ⁱⁱ	121.05 (5)
Cu1—I2—Cu2	69.22 (3)	C1—S1—Cu1	114.9 (2)
Cu5 ⁱ —I2—Cu1	63.19 (3)	C9—S2—Cu5	109.8 (2)
Cu5 ⁱ —I2—Cu2	99.07 (3)	C1—N1—C15	122.2 (5)
Cu2—I3—Cu1	66.20 (2)	C1—N1—C16	120.6 (5)
Cu2—I3—Cu4	59.92 (2)	C15—N1—C16	117.1 (5)
Cu3—I3—Cu1	64.31 (2)	C7—N2—C8	116.5 (5)
Cu3—I3—Cu2	99.61 (3)	C9—N2—C7	121.4 (5)
Cu3—I3—Cu4	72.11 (3)	C9—N2—C8	121.8 (5)
Cu4—I3—Cu1	100.48 (2)	C17—N3—Cu2	173.3 (6)
Cu4—I4—Cu2	62.94 (3)	C19—N4—Cu4	165.1 (6)
Cu3—I5—Cu5 ⁱ	60.82 (3)	C21—N5—Cu3	173.3 (6)
Cu4—I5—Cu3	74.86 (3)	N1—C1—S1	122.5 (4)
Cu4—I5—Cu5 ⁱ	100.36 (3)	N1—C1—C2	116.5 (5)
I1—Cu1—I3	105.67 (3)	C2—C1—S1	121.0 (4)
I1—Cu1—Cu2	140.41 (3)	C3—C2—C1	120.8 (5)
I1—Cu1—Cu3	56.34 (2)	C7—C2—C1	119.8 (5)
I1—Cu1—Cu5 ⁱ	60.70 (2)	C7—C2—C3	119.5 (5)
I2—Cu1—I1	113.53 (3)	С2—С3—Н3	120.3
I2—Cu1—I3	107.47 (3)	C4—C3—C2	119.3 (6)
I2—Cu1—Cu2	55.73 (2)	С4—С3—Н3	120.3

I2—Cu1—Cu3	103.58 (3)	C3—C4—H4	119.5
I2—Cu1—Cu5 ⁱ	57.20 (2)	C5—C4—C3	121.1 (6)
I3—Cu1—Cu2	55.00 (2)	C5—C4—H4	119.5
I3—Cu1—Cu3	55.43 (2)	C4—C5—H5	119.8
Cu3—Cu1—Cu2	87.38 (3)	C4—C5—C6	120.4 (6)
Cu5 ⁱ —Cu1—I3	101.61 (3)	С6—С5—Н5	119.8
Cu5 ⁱ —Cu1—Cu2	87.67 (3)	С5—С6—Н6	120.6
Cu5 ⁱ —Cu1—Cu3	57.26 (3)	C7—C6—C5	118.7 (6)
S1—Cu1—I1	125.31 (5)	С7—С6—Н6	120.6
S1—Cu1—I2	111.17 (5)	C2—C7—N2	119.2 (5)
S1—Cu1—I3	89.01 (4)	C2—C7—C6	121.0 (5)
S1—Cu1—Cu2	91.17 (5)	C6—C7—N2	119.8 (5)
S1—Cu1—Cu3	136.57 (5)	N2—C8—H8A	109.5
S1—Cu1—Cu5 ⁱ	166.07 (6)	N2—C8—H8B	109.5
I2—Cu2—I3	110.39 (3)	N2—C8—H8C	109.5
I2—Cu2—Cu1	55.04 (2)	H8A—C8—H8B	109.5
I2—Cu2—Cu4	107.28 (3)	H8A—C8—H8C	109.5
I3—Cu2—Cu1	58.79 (2)	H8B—C8—H8C	109.5
I3—Cu2—Cu4	61.14 (3)	N2—C9—S2	121.6 (4)
I4—Cu2—I2	111.28 (3)	N2—C9—C10	118.0 (5)
I4—Cu2—I3	112.77 (3)	C10—C9—S2	120.4 (4)
I4—Cu2—Cu1	147.96 (3)	C11—C10—C9	117.7 (5)
I4—Cu2—Cu4	57.44 (3)	C15—C10—C9	123.3 (5)
Cu4—Cu2—Cu1	96.51 (3)	C15—C10—C11	119.0 (5)
N3—Cu2—I2	114.37 (16)	C10-C11-H11	119.9
N3—Cu2—I3	100.17 (17)	C12—C11—C10	120.2 (6)
N3—Cu2—I4	107.43 (16)	C12—C11—H11	119.9
N3—Cu2—Cu1	104.56 (17)	C11—C12—H12	120.0
N3—Cu2—Cu4	138.24 (16)	C11—C12—C13	120.0 (5)
I1—Cu3—I3	110.06 (3)	C13—C12—H12	120.0
I1—Cu3—I5	117.32 (3)	C12—C13—H13	119.7
I1—Cu3—Cu1	56.45 (2)	C12—C13—C14	120.7 (6)
I1—Cu3—Cu5 ⁱ	60.98 (3)	C14—C13—H13	119.7
I3—Cu3—Cu1	60.25 (2)	C13—C14—H14	120.2
I3—Cu3—Cu5 ⁱ	105.97 (3)	C13—C14—C15	119.6 (6)
I5—Cu3—I3	106.08 (3)	C15—C14—H14	120.2
I5—Cu3—Cu1	106.62 (3)	C10—C15—N1	120.8 (5)
I5—Cu3—Cu5 ⁱ	60.76 (3)	C10—C15—C14	120.4 (5)
Cu5 ⁱ —Cu3—Cu1	57.84 (3)	C14—C15—N1	118.8 (5)
N5—Cu3—I1	112.82 (19)	N1—C16—H16A	109.5

N5—Cu3—I3	102.03 (17)	N1—C16—H16B	109.5
N5—Cu3—I5	107.25 (18)	N1—C16—H16C	109.5
N5—Cu3—Cu1	145.12 (17)	H16A—C16—H16B	109.5
N5—Cu3—Cu5 ⁱ	151.67 (17)	H16A—C16—H16C	109.5
I4—Cu4—I3	112.74 (3)	H16B—C16—H16C	109.5
I4—Cu4—I5	117.04 (3)	N3—C17—C18	179.0 (8)
I4—Cu4—Cu2	59.62 (3)	C17—C18—H18A	109.5
I5—Cu4—I3	104.74 (3)	C17—C18—H18B	109.5
I5—Cu4—Cu2	107.28 (3)	C17—C18—H18C	109.5
Cu2—Cu4—I3	58.93 (3)	H18A—C18—H18B	109.5
N4—Cu4—I3	98.04 (17)	H18A—C18—H18C	109.5
N4—Cu4—I4	113.04 (18)	H18B—C18—H18C	109.5
N4—Cu4—I5	109.30 (17)	N4-C19-C20	177.3 (7)
N4—Cu4—Cu2	140.83 (16)	С19—С20—Н20А	109.5
I1 ⁱⁱ —Cu5—Cu1 ⁱⁱ	58.00 (2)	С19—С20—Н20В	109.5
I2 ⁱⁱ —Cu5—I1 ⁱⁱ	113.25 (3)	С19—С20—Н20С	109.5
I2 ⁱⁱ —Cu5—I5 ⁱⁱ	108.89 (3)	H20A—C20—H20B	109.5
I2 ⁱⁱ —Cu5—Cu1 ⁱⁱ	59.60 (2)	H20A—C20—H20C	109.5
I2 ⁱⁱ —Cu5—Cu3 ⁱⁱ	111.61 (3)	H20B—C20—H20C	109.5
I5 ⁱⁱ —Cu5—I1 ⁱⁱ	112.54 (3)	N5-C21-C22	178.6 (8)
I5 ⁱⁱ —Cu5—Cu1 ⁱⁱ	110.36 (3)	C21—C22—H22A	109.5
I5 ⁱⁱ —Cu5—Cu3 ⁱⁱ	58.42 (3)	С21—С22—Н22В	109.5
Cu3 ⁱⁱ —Cu5—I1 ⁱⁱ	58.13 (3)	C21—C22—H22C	109.5
Cu3 ⁱⁱ —Cu5—Cu1 ⁱⁱ	64.89 (3)	H22A—C22—H22B	109.5
S2—Cu5—I1 ⁱⁱ	95.57 (5)	H22A—C22—H22C	109.5
S2—Cu5—I2 ⁱⁱ	127.34 (5)	H22B—C22—H22C	109.5
J	•		

Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Crystal data for $[Cu_2Br_2(mdta)]_n\left(3\right)$

$C_{16}H_{14}Br_2Cu_2N_2S_2$	F(000) = 1136
$M_r = 585.31$	$D_{\rm x} = 2.081 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 13.306 (3) Å	Cell parameters from 26739 reflections
<i>b</i> = 10.4481 (12) Å	$\theta = 2.0-29.7^{\circ}$
c = 13.639 (3) Å	$\mu = 6.78 \text{ mm}^{-1}$
$\beta = 99.860 \ (15)^{\circ}$	T = 120 K
V = 1868.1 (6) Å ³	Prism, yellow
Z = 4	$0.45 \times 0.31 \times 0.28 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	5043 independent reflections
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus	4157 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.085$
rotation method, ω scans	$\theta_{max} = 29.3^{\circ}, \theta_{min} = 2.0^{\circ}$
Absorption correction: integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	$h = -18 \rightarrow 18$
$T_{\min} = 0.099, T_{\max} = 0.207$	$k = -14 \rightarrow 14$
24955 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.147$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.1022P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5043 reflections	$(\Delta/\sigma)_{max} = 0.001$
219 parameters	$\Delta \lambda_{\text{max}} = 1.49 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rangle_{\rm min} = -1.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters

$(Å^2)$ for $[Cu_2Br_2(mdta)]_n$ (3)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.84996 (4)	0.16475 (4)	0.65221 (3)	0.03039 (14)
Br2	0.88057 (3)	0.01037 (4)	0.39356 (3)	0.02060 (12)

Cu1	0.87147 (4)	0.20853 (5)	0.48670 (4)	0.02396 (15)
Cu2	0.92234 (4)	0.97163 (5)	0.58141 (4)	0.02592 (15)
S1	0.90198 (8)	0.38935 (9)	0.41274 (8)	0.0206 (2)
S2	0.90186 (8)	0.78656 (9)	0.65983 (7)	0.0187 (2)
N1	0.8140 (3)	0.6157 (3)	0.3972 (2)	0.0168 (6)
N2	0.7902 (3)	0.5778 (3)	0.6253 (2)	0.0165 (6)
C1	0.8107 (3)	0.4946 (3)	0.4285 (3)	0.0172 (7)
C2	0.7224 (3)	0.4564 (3)	0.4746 (3)	0.0177 (7)
C3	0.6494 (3)	0.3734 (4)	0.4229 (3)	0.0237 (8)
Н3	0.655103	0.345934	0.357639	0.028*
C4	0.5685 (4)	0.3310 (4)	0.4670 (4)	0.0282 (9)
H4	0.518446	0.275498	0.431629	0.034*
C5	0.5613 (4)	0.3697 (5)	0.5621 (4)	0.0298 (9)
Н5	0.506974	0.338777	0.592600	0.036*
C6	0.6324 (3)	0.4533 (4)	0.6141 (3)	0.0225 (8)
H6	0.626432	0.480407	0.679365	0.027*
C7	0.7119 (3)	0.4966 (3)	0.5699 (3)	0.0175 (7)
C8	0.8525 (3)	0.5210 (4)	0.7133 (3)	0.0215 (8)
H8A	0.827627	0.434534	0.723591	0.032*
H8B	0.847939	0.573808	0.771745	0.032*
H8C	0.923692	0.516470	0.703549	0.032*
C9	0.8071 (3)	0.6972 (3)	0.5976 (3)	0.0144 (7)
C10	0.7371 (3)	0.7524 (3)	0.5106 (3)	0.0152 (7)
C11	0.6748 (3)	0.8551 (4)	0.5252 (3)	0.0207 (8)
H11	0.675408	0.887348	0.590394	0.025*
C12	0.6119 (3)	0.9107 (4)	0.4449 (3)	0.0228 (8)
H12	0.568518	0.979805	0.455156	0.027*
C13	0.6126 (3)	0.8650 (4)	0.3495 (3)	0.0210 (8)
H13	0.568953	0.902722	0.294704	0.025*
C14	0.7395 (3)	0.7094 (3)	0.4150 (3)	0.0162 (7)
C15	0.6765 (3)	0.7646 (4)	0.3332 (3)	0.0194 (7)
H15	0.677328	0.734090	0.267729	0.023*
C16	0.8948 (4)	0.6584 (4)	0.3442 (3)	0.0230 (8)
H16A	0.961505	0.637294	0.383508	0.034*
H16B	0.889825	0.751234	0.334082	0.034*
H16C	0.887230	0.615385	0.279507	0.034*

Atomic displacement parameters $(Å^2)$ for $[Cu_2Br_2(mdta)]_n$ (3)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0427 (3)	0.0233 (2)	0.0310 (3)	0.00437 (17)	0.0229 (2)	0.00433 (15)

Br2	0.0203 (2)	0.0197 (2)	0.0226 (2)	-0.00238 (13)	0.00613 (16)	0.00013 (13)
Cu1	0.0249 (3)	0.0213 (3)	0.0272 (3)	0.00055 (19)	0.0088 (2)	0.00380 (19)
Cu2	0.0281 (3)	0.0223 (3)	0.0284 (3)	-0.0033 (2)	0.0078 (2)	0.00169 (19)
S1	0.0246 (5)	0.0194 (4)	0.0203 (5)	0.0029 (4)	0.0114 (4)	0.0011 (3)
S2	0.0182 (5)	0.0194 (4)	0.0177 (5)	-0.0026 (3)	0.0012 (4)	-0.0002 (3)
N1	0.0166 (16)	0.0182 (14)	0.0171 (15)	0.0015 (12)	0.0067 (12)	0.0024 (11)
N2	0.0165 (15)	0.0225 (15)	0.0109 (14)	-0.0041 (12)	0.0034 (12)	0.0017 (11)
C1	0.022 (2)	0.0175 (15)	0.0129 (17)	-0.0026 (13)	0.0061 (15)	-0.0028 (12)
C2	0.0192 (19)	0.0184 (16)	0.0173 (18)	-0.0009 (13)	0.0082 (15)	0.0010 (13)
C3	0.028 (2)	0.0236 (17)	0.021 (2)	-0.0105 (16)	0.0070 (17)	-0.0056 (15)
C4	0.022 (2)	0.031 (2)	0.032 (2)	-0.0102 (17)	0.0053 (18)	-0.0040 (17)
C5	0.022 (2)	0.038 (2)	0.032 (2)	-0.0116 (18)	0.0135 (18)	0.0001 (18)
C6	0.022 (2)	0.0277 (19)	0.0201 (19)	-0.0072 (15)	0.0106 (16)	0.0027 (15)
C7	0.0159 (18)	0.0216 (16)	0.0155 (17)	-0.0022 (13)	0.0041 (14)	0.0008 (13)
C8	0.020 (2)	0.0280 (18)	0.0157 (18)	0.0021 (15)	0.0021 (15)	0.0017 (14)
C9	0.0148 (17)	0.0159 (14)	0.0140 (16)	0.0025 (12)	0.0070 (13)	0.0002 (12)
C10	0.0143 (17)	0.0172 (15)	0.0142 (17)	0.0010 (12)	0.0026 (13)	0.0008 (12)
C11	0.0180 (19)	0.0252 (18)	0.0208 (19)	0.0022 (14)	0.0088 (15)	-0.0009 (14)
C12	0.0183 (19)	0.030 (2)	0.021 (2)	0.0055 (15)	0.0068 (16)	0.0033 (15)
C13	0.0165 (19)	0.0260 (18)	0.0205 (19)	0.0031 (15)	0.0028 (15)	0.0063 (15)
C14	0.0151 (17)	0.0181 (16)	0.0163 (18)	-0.0028 (13)	0.0054 (14)	-0.0011 (13)
C15	0.0161 (18)	0.0259 (18)	0.0160 (18)	-0.0006 (14)	0.0025 (15)	0.0019 (14)
C16	0.030 (2)	0.0180 (16)	0.026 (2)	0.0005 (15)	0.0187 (18)	0.0032 (14)

Geometric parameters (Å, °) for $[Cu_2Br_2(mdta)]_n$ (3)

Br1—Cu1	2.3682 (8)	N2—C9	1.334 (4)
Br1—Cu2 ⁱ	2.4998 (7)	C1—C2	1.480 (5)
Br2—Cu1	2.4428 (7)	C2—C3	1.400 (5)
Br2—Cu2 ⁱ	2.5592 (8)	C2—C7	1.395 (5)
Br2—Cu2 ⁱⁱ	2.5927 (9)	C3—C4	1.393 (6)
Cu1—Cu2 ⁱ	2.8202 (8)	C4—C5	1.378 (7)
Cu1—S1	2.2118 (11)	C5—C6	1.390 (6)
Cu2—S2	2.2488 (11)	C6—C7	1.380 (5)
S1—C1	1.679 (4)	C9—C10	1.493 (5)
S2—C9	1.678 (4)	C10—C11	1.390 (5)
N1—C1	1.338 (5)	C10—C14	1.385 (5)
N1-C14	1.444 (5)	C11—C12	1.387 (6)
N1—C16	1.464 (5)	C12—C13	1.387 (6)
N2—C7	1.451 (5)	C13—C15	1.392 (6)
N2—C8	1.463 (5)	C14—C15	1.400 (5)

Cu1—Br1—Cu2 ⁱ	70.75 (2)	C9—N2—C8	120.8 (3)
Cu1—Br2—Cu2 ⁱ	68.59 (2)	N1—C1—S1	121.0 (3)
Cu1—Br2—Cu2 ⁱⁱ	90.52 (2)	N1—C1—C2	117.6 (3)
Cu2 ⁱ —Br2—Cu2 ⁱⁱ	80.70 (3)	C2—C1—S1	121.4 (3)
Br1—Cu1—Br2	110.91 (2)	C3—C2—C1	119.1 (4)
Br1—Cu1—Cu2 ⁱ	56.81 (2)	C7—C2—C1	121.9 (4)
Br2—Cu1—Cu2 ⁱ	57.66 (2)	С7—С2—С3	119.0 (4)
S1—Cu1—Br1	131.40 (4)	C4—C3—C2	120.0 (4)
S1—Cu1—Br2	117.22 (4)	C5—C4—C3	119.8 (4)
S1—Cu1—Cu2 ⁱ	155.53 (4)	C4—C5—C6	120.9 (4)
Br1 ⁱⁱⁱ —Cu2—Br2 ⁱⁱ	109.78 (3)	C7—C6—C5	119.2 (4)
Br1 ⁱⁱⁱ —Cu2—Br2 ⁱⁱⁱ	103.13 (3)	C2—C7—N2	118.9 (3)
Br1 ⁱⁱⁱ —Cu2—Cu1 ⁱⁱⁱ	52.44 (2)	C6—C7—N2	119.9 (4)
Br2 ⁱⁱⁱ —Cu2—Br2 ⁱⁱ	99.30 (3)	С6—С7—С2	121.0 (4)
Br2 ⁱⁱⁱ —Cu2—Cu1 ⁱⁱⁱ	53.751 (18)	N2—C9—S2	121.7 (3)
Br2 ⁱⁱ —Cu2—Cu1 ⁱⁱⁱ	98.90 (2)	N2-C9-C10	118.2 (3)
S2—Cu2—Br1 ⁱⁱⁱ	115.10 (4)	C10—C9—S2	120.0 (3)
S2—Cu2—Br2 ⁱⁱⁱ	126.08 (3)	С11—С10—С9	119.4 (3)
S2—Cu2—Br2 ⁱⁱ	101.65 (3)	C14—C10—C9	120.7 (3)
S2—Cu2—Cu1 ⁱⁱⁱ	158.97 (4)	C14—C10—C11	119.7 (4)
C1—S1—Cu1	107.94 (14)	C12-C11-C10	120.3 (4)
C9—S2—Cu2	112.32 (13)	C13—C12—C11	119.8 (4)
C1—N1—C14	121.8 (3)	C12—C13—C15	120.8 (4)
C1—N1—C16	120.9 (3)	C10-C14-N1	120.4 (3)
C14—N1—C16	117.4 (3)	C10-C14-C15	120.7 (4)
C7—N2—C8	116.5 (3)	C15—C14—N1	118.7 (3)
C9—N2—C7	122.7 (3)	C13—C15—C14	118.8 (4)

Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z.

Crystal data for $[Cu_3Br_3\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (4)

$C_{32}H_{28}Br_{3}Cu_{3}N_{4}S_{4}\cdot C_{2}H_{3}N$	F(000) = 1052
$M_r = 1068.23$	$D_{\rm x} = 1.808 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 8.7415 (4) Å	Cell parameters from 22871 reflections
<i>b</i> = 17.1309 (8) Å	$\theta = 2.0-29.4^{\circ}$
c = 13.1531 (6) Å	$\mu = 4.91 \text{ mm}^{-1}$
$\beta = 95.007 \ (3)^{\circ}$	T = 120 K

$V = 1962.16 (16) Å^3$	Block, yellow
Z = 2	$0.41 \times 0.08 \times 0.05 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	7709 independent reflections
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus	5814 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.086$
rotation method, ω scans	$\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.0^{\circ}$
Absorption correction: integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	$h = -10 \rightarrow 10$
$T_{\min} = 0.187, T_{\max} = 0.535$	$k = -21 \rightarrow 21$
19182 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.105$	H-atom parameters constrained
$wR(F^2) = 0.293$	$w = 1/[\sigma^2(F_o^2) + (0.1897P)^2 + 10.6517P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
7709 reflections	$\Delta \rangle_{\text{max}} = 4.18 \text{ e} \text{ Å}^{-3}$
447 parameters	$\Delta \rangle_{\min} = -1.42 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Classical Flack method preferred over Parsons because s.u. lower.
Primary atom site location: structure-invariant direct methods	Absolute structure parameter: 0.00 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $U_{\rm iso}$ */ $U_{\rm eq}$ x v Ζ. Br1 0.0953 (3) 0.29999 (14) 0.31854 (19) 0.0490 (5) Br2 0.42516 (12) 0.19249 (19) 0.0531 (7) 0.4311 (3) Br3 0.3912 (3) 0.17470 (12) 0.16822 (19) 0.0516 (6) Cu1 0.2182 (3) 0.44158 (16) 0.3014 (2) 0.0535 (8) Cu2 -0.1594 (3) 0.65741 (15) -0.2625 (2) 0.0509 (8) Cu3 0.3218 (4) 0.2221 (3) 0.0583 (8) 0.3013(2)**S**1 0.2403 (7) 0.4822 (3) 0.4648 (5) 0.0526 (15) S2 0.7912 (7) 0.6261 (3) 0.5684 (5) 0.0519 (14) **S**3 0.0618(7) 0.6102 (4) -0.1838 (5) 0.0540 (15) **S**4 -0.0030(7)0.4774 (3) 0.2054 (5) 0.0500 (14) N1 0.450(2) 0.4798 (11) 0.6223 (15) 0.054 (5) N2 0.692 (2) 0.5036 (11) 0.4590 (16) 0.050(5) N3 0.211(2)0.6076 (12) -0.0011 (15) 0.050(5) N4 -0.102 (2) 0.5966 (10) 0.0895 (15) 0.045(4)C1 0.406 (3) 0.4532 (13) 0.5288 (17) 0.047 (5) C2 0.510(2)0.4814 (16) 0.3992(12)0.041 (5) C3 0.466(2) 0.3210 (12) 0.4646 (18) 0.045 (5) H3 0.372224 0.302545 0.486742 0.054* C4 0.559(3) 0.2716 (14) 0.4165 (18) 0.051 (6) H4 0.061* 0.530606 0.218243 0.409382 C5 0.2961 (14) 0.378(2)0.054 (6) 0.692(3)H5 0.751131 0.260662 0.341818 0.065* C6 0.3747 (13) 0.053 (6) 0.742(3)0.3928(19)H6 0.835094 0.393253 0.369072 0.064* C7 0.4227 (13) 0.044 (5) 0.646(2) 0.4444 (16) C8 0.694 (3) 0.5527 (13) 0.3644 (18) 0.052 (6) 0.078* H8A 0.615890 0.593827 0.365670 0.304053 H8B 0.670529 0.519792 0.078*H8C 0.795161 0.576420 0.361833 0.078* C9 0.736(2) 0.5336(13) 0.5525 (18) 0.046 (5) C10 0.733 (3) 0.4815 (12) 0.6413 (19) 0.053 (6) C11 0.870(2)0.4572 (14) 0.6942 (19) 0.050(5)H11 0.060* 0.964438 0.471075 0.669029 C12 0.779(2)0.055 (6) 0.870(3) 0.4152 (13) H12 0.965389 0.401159 0.815249 0.066* C13 0.3918 (13) 0.064 (8) 0.734 (3) 0.816(2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for $[Cu_3Br_3\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (4)

H13	0.734997	0.360482	0.875368	0.076*
C14	0.591 (3)	0.4149 (16)	0.764 (2)	0.061 (6)
H14	0.496456	0.401763	0.789276	0.073*
C15	0.596 (3)	0.4570 (12)	0.6746 (18)	0.048 (5)
C16	0.356 (3)	0.5322 (16)	0.6746 (19)	0.057 (6)
H16A	0.265843	0.503951	0.695215	0.086*
H16B	0.321760	0.575239	0.629088	0.086*
H16C	0.414817	0.553022	0.735335	0.086*
C17	0.096 (2)	0.6365 (12)	-0.0610 (16)	0.042 (5)
C18	-0.001 (3)	0.6965 (12)	-0.0173 (17)	0.048 (6)
C19	-0.005 (3)	0.7759 (13)	-0.0522 (18)	0.048 (5)
H19	0.060331	0.792918	-0.101786	0.058*
C20	-0.106 (3)	0.8267 (13)	-0.0125 (18)	0.049 (5)
H20	-0.108157	0.879234	-0.035824	0.058*
C21	-0.201 (3)	0.8061 (15)	0.057 (2)	0.056 (6)
H21	-0.269935	0.843333	0.081132	0.067*
C22	-0.198 (2)	0.7302 (11)	0.0952 (18)	0.042 (5)
H22	-0.262504	0.715460	0.146545	0.050*
C23	-0.100 (3)	0.6764 (12)	0.0565 (17)	0.046 (5)
C24	-0.239 (3)	0.5494 (15)	0.058 (2)	0.053 (6)
H24A	-0.299119	0.574941	0.001288	0.079*
H24B	-0.302722	0.544426	0.116050	0.079*
H24C	-0.207804	0.497377	0.037297	0.079*
C25	0.010 (3)	0.5670 (12)	0.1544 (17)	0.045 (5)
C26	0.152 (3)	0.6156 (12)	0.1768 (19)	0.050 (6)
C27	0.191 (3)	0.6384 (13)	0.2790 (18)	0.048 (5)
H27	0.129562	0.623470	0.331756	0.057*
C28	0.325 (3)	0.6842 (15)	0.300 (2)	0.063 (7)
H28	0.349189	0.703432	0.367382	0.075*
C29	0.416 (3)	0.7005 (15)	0.229 (3)	0.064 (8)
H29	0.508607	0.728172	0.246244	0.077*
C30	0.377 (3)	0.6770 (16)	0.124 (2)	0.060 (6)
H30	0.441004	0.689578	0.071677	0.072*
C31	0.243 (2)	0.6355 (11)	0.1048 (19)	0.045 (5)
C32	0.313 (3)	0.5476 (13)	-0.039 (2)	0.054 (6)
H32A	0.376585	0.570923	-0.088282	0.081*
H32B	0.250825	0.505450	-0.071091	0.081*
H32C	0.379249	0.526560	0.018932	0.081*
N5	0.257 (3)	0.3239 (17)	0.692 (2)	0.084 (8)
C33	0.145 (3)	0.3089 (16)	0.643 (2)	0.055 (6)

C34	0.004 (3)	0.2896 (18)	0.583 (2)	0.064 (7)
H34A	-0.016827	0.328582	0.529143	0.096*
H34B	-0.081226	0.289385	0.627288	0.096*
H34C	0.012860	0.237909	0.552567	0.096*

Atomic displacement parameters (A^2) for $[Cu_3Br_3\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (4)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0513 (12)	0.0333 (9)	0.0592 (13)	0.0013 (8)	-0.0126 (9)	0.0014 (9)
Br2	0.0534 (13)	0.0414 (13)	0.0602 (14)	-0.0027 (9)	-0.0190 (11)	0.0038 (10)
Br3	0.0521 (13)	0.0386 (12)	0.0600 (14)	0.0017 (9)	-0.0176 (11)	-0.0017 (9)
Cu1	0.0582 (16)	0.0376 (15)	0.0595 (17)	0.0034 (12)	-0.0254 (13)	0.0006 (12)
Cu2	0.0540 (16)	0.0370 (15)	0.0572 (17)	-0.0008 (12)	-0.0203 (13)	-0.0019 (12)
Cu3	0.0626 (18)	0.0376 (13)	0.072 (2)	0.0006 (13)	-0.0120 (14)	0.0017 (14)
S1	0.051 (3)	0.042 (3)	0.060 (4)	0.008 (2)	-0.022 (3)	-0.006 (3)
S2	0.061 (3)	0.033 (3)	0.057 (3)	-0.003 (2)	-0.022 (3)	-0.001 (2)
S3	0.057 (3)	0.045 (3)	0.055 (4)	0.005 (2)	-0.022 (3)	-0.004 (3)
S4	0.051 (3)	0.036 (3)	0.059 (3)	-0.001 (2)	-0.022 (3)	0.007 (2)
N1	0.066 (12)	0.032 (9)	0.056 (12)	-0.001 (8)	-0.035 (9)	-0.010 (8)
N2	0.050 (10)	0.035 (9)	0.061 (12)	-0.001 (7)	-0.024 (9)	-0.004 (8)
N3	0.031 (9)	0.060 (12)	0.055 (12)	0.011 (8)	-0.015 (8)	0.000 (9)
N4	0.040 (9)	0.033 (9)	0.059 (11)	0.005 (7)	-0.023 (8)	-0.008 (8)
C1	0.064 (14)	0.037 (11)	0.038 (11)	-0.011 (10)	-0.009 (10)	-0.004 (9)
C2	0.043 (11)	0.037 (10)	0.038 (11)	-0.005 (8)	-0.022 (9)	0.005 (8)
C3	0.036 (10)	0.036 (11)	0.059 (13)	-0.003 (8)	-0.014 (9)	0.007 (9)
C4	0.055 (13)	0.044 (12)	0.049 (13)	-0.013 (10)	-0.020 (10)	-0.004 (10)
C5	0.052 (13)	0.033 (10)	0.075 (16)	0.000 (10)	-0.018 (11)	-0.005 (11)
C6	0.062 (14)	0.034 (11)	0.059 (14)	0.001 (10)	-0.023 (11)	0.005 (10)
C7	0.041 (11)	0.045 (11)	0.041 (11)	-0.002 (9)	-0.018 (8)	0.010 (9)
C8	0.073 (15)	0.037 (11)	0.043 (12)	-0.001 (10)	-0.017 (11)	-0.005 (9)
C9	0.030 (10)	0.048 (12)	0.058 (13)	-0.004 (9)	-0.010 (9)	0.007 (10)
C10	0.074 (16)	0.026 (10)	0.055 (14)	-0.010 (10)	-0.019 (11)	0.014 (9)
C11	0.033 (10)	0.048 (13)	0.064 (15)	0.005 (9)	-0.017 (10)	-0.003 (11)
C12	0.053 (13)	0.036 (11)	0.070 (16)	0.004 (10)	-0.028 (11)	0.005 (11)
C13	0.10 (2)	0.033 (11)	0.056 (15)	-0.008 (12)	-0.037 (14)	0.006 (10)
C14	0.064 (15)	0.057 (15)	0.057 (15)	-0.006 (12)	-0.017 (12)	-0.021 (12)
C15	0.053 (12)	0.031 (10)	0.054 (13)	0.000 (9)	-0.030 (10)	0.000 (9)
C16	0.054 (13)	0.057 (15)	0.056 (14)	-0.008 (11)	-0.019 (11)	-0.012 (11)
C17	0.042 (11)	0.041 (11)	0.038 (11)	-0.001 (8)	-0.022 (8)	-0.010 (8)
C18	0.055 (13)	0.034 (10)	0.049 (13)	-0.003 (9)	-0.031 (10)	-0.001 (9)
C19	0.048 (12)	0.038 (11)	0.053 (13)	-0.003 (9)	-0.026 (10)	0.003 (10)

C20	0.056 (13)	0.036 (11)	0.050 (13)	0.000 (10)	-0.018 (10)	0.000 (9)
C21	0.050 (13)	0.040 (11)	0.073 (16)	0.004 (10)	-0.027 (11)	-0.012 (12)
C22	0.034 (10)	0.032 (10)	0.059 (13)	0.003 (7)	-0.004 (9)	0.003 (9)
C23	0.048 (12)	0.034 (10)	0.048 (12)	0.002 (9)	-0.029 (10)	0.005 (9)
C24	0.055 (13)	0.049 (13)	0.053 (13)	-0.017 (10)	-0.007 (11)	-0.003 (10)
C25	0.049 (12)	0.037 (11)	0.046 (12)	0.001 (9)	-0.023 (9)	0.005 (9)
C26	0.045 (12)	0.031 (10)	0.067 (15)	0.000 (9)	-0.031 (11)	-0.003 (10)
C27	0.054 (13)	0.038 (12)	0.049 (13)	0.007 (9)	-0.004 (10)	0.002 (9)
C28	0.058 (15)	0.041 (13)	0.083 (19)	0.008 (11)	-0.031 (14)	0.003 (13)
C29	0.056 (15)	0.040 (13)	0.09 (2)	-0.007 (11)	-0.034 (15)	-0.011 (13)
C30	0.041 (12)	0.054 (14)	0.081 (18)	-0.003 (10)	-0.011 (11)	0.010 (13)
C31	0.042 (11)	0.020 (9)	0.068 (15)	0.001 (7)	-0.017 (10)	-0.003 (9)
C32	0.050 (13)	0.029 (10)	0.080 (17)	0.010 (9)	-0.014 (11)	-0.001 (10)
N5	0.059 (14)	0.083 (19)	0.10 (2)	-0.009 (12)	-0.031 (13)	0.021 (15)
C33	0.052 (14)	0.047 (13)	0.066 (16)	-0.005 (11)	0.003 (12)	0.007 (12)
C34	0.065 (16)	0.069 (18)	0.057 (16)	0.006 (13)	-0.005 (12)	0.000 (13)

Geometric parameters (Å, °) for $[Cu_3Br_3\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (4)

Br1—Cu1	2.670 (4)	C2—C3	1.40 (3)
Br1—Cu2 ⁱ	2.626 (4)	C2—C7	1.38 (3)
Br1—Cu3	2.443 (4)	C3—C4	1.37 (3)
Br2—Cu1	2.462 (4)	C4—C5	1.38 (4)
Br2—Cu3	2.373 (4)	C5—C6	1.42 (3)
Br3—Cu2 ⁱ	2.484 (4)	C6—C7	1.40 (4)
Br3—Cu3	2.377 (4)	C9—C10	1.47 (3)
Cu1—Cu3	2.802 (5)	C10—C11	1.39 (3)
Cu1—S1	2.250 (7)	C10—C15	1.38 (4)
Cu1—S4	2.299 (6)	C11—C12	1.33 (4)
Cu2—Cu3 ⁱⁱ	2.916 (4)	C12—C13	1.38 (4)
Cu2—S2 ⁱⁱⁱ	2.292 (7)	C13—C14	1.42 (4)
Cu2—S3	2.262 (6)	C14—C15	1.38 (4)
S1—C1	1.68 (2)	C17—C18	1.48 (3)
S2—C9	1.67 (2)	C18—C19	1.43 (3)
S3—C17	1.68 (2)	C18—C23	1.40 (4)
S4—C25	1.68 (2)	C19—C20	1.37 (3)
N1—C1	1.34 (3)	C20—C21	1.34 (4)
N1—C15	1.45 (3)	C21—C22	1.39 (3)
N1—C16	1.43 (3)	C22—C23	1.39 (3)
N2—C7	1.45 (3)	C25—C26	1.50 (3)
N2—C8	1.50 (3)	C26—C27	1.41 (3)

N2—C9	1.36 (3)	C26—C31	1.33 (3)
N3—C17	1.32 (3)	C27—C28	1.41 (4)
N3—C31	1.48 (3)	C28—C29	1.31 (4)
N3—C32	1.47 (3)	C29—C30	1.44 (4)
N4—C23	1.44 (3)	C30—C31	1.37 (3)
N4—C24	1.48 (3)	N5—C33	1.15 (3)
N4—C25	1.34 (3)	C33—C34	1.45 (4)
C1—C2	1.47 (3)		
Cu2 ⁱ —Br1—Cu1	136.38 (14)	N1—C1—C2	117 (2)
Cu3—Br1—Cu1	66.27 (12)	C2—C1—S1	120.6 (15)
Cu3—Br1—Cu2 ⁱ	70.14 (12)	C3—C2—C1	120 (2)
Cu3—Br2—Cu1	70.79 (13)	C7—C2—C1	123.2 (19)
Cu3—Br3—Cu2 ⁱ	73.69 (13)	C7—C2—C3	117 (2)
Br1—Cu1—Cu3	52.97 (10)	C4—C3—C2	120 (2)
Br2—Cu1—Br1	105.99 (13)	C3—C4—C5	123 (2)
Br2—Cu1—Cu3	53.13 (11)	C4—C5—C6	120 (2)
S1—Cu1—Br1	101.7 (2)	C7—C6—C5	116 (2)
S1—Cu1—Br2	125.8 (2)	C2—C7—N2	118 (2)
S1—Cu1—Cu3	128.1 (2)	C2—C7—C6	125 (2)
S1—Cu1—S4	116.1 (3)	C6—C7—N2	117 (2)
S4—Cu1—Br1	87.91 (18)	N2—C9—S2	122.0 (17)
S4—Cu1—Br2	110.7 (2)	N2—C9—C10	118 (2)
S4—Cu1—Cu3	108.0 (2)	C10—C9—S2	120.1 (18)
Br1 ⁱⁱ —Cu2—Cu3 ⁱⁱ	51.99 (10)	C11—C10—C9	120 (2)
Br3 ⁱⁱ —Cu2—Br1 ⁱⁱ	103.45 (13)	C15—C10—C9	121 (2)
Br3 ⁱⁱ —Cu2—Cu3 ⁱⁱ	51.47 (10)	C15—C10—C11	119 (2)
S2 ⁱⁱⁱ —Cu2—Br1 ⁱⁱ	88.37 (18)	C12—C11—C10	122 (2)
S2 ⁱⁱⁱ —Cu2—Br3 ⁱⁱ	114.8 (2)	C11—C12—C13	120 (2)
S2 ⁱⁱⁱ —Cu2—Cu3 ⁱⁱ	108.71 (19)	C12—C13—C14	120 (2)
S3—Cu2—Br1 ⁱⁱ	105.5 (2)	C15—C14—C13	118 (3)
S3—Cu2—Br3 ⁱⁱ	121.1 (2)	C10-C15-N1	121 (2)
S3—Cu2—Cu3 ⁱⁱ	129.0 (2)	C14—C15—N1	117 (2)
S3—Cu2—S2 ⁱⁱⁱ	116.2 (3)	C14—C15—C10	121 (2)
Br1—Cu3—Cu1	60.76 (12)	N3—C17—S3	122.5 (17)
Br1—Cu3—Cu2 ⁱ	57.87 (11)	N3—C17—C18	117.6 (18)
Br2—Cu3—Br1	116.72 (16)	C18—C17—S3	119.9 (14)
Br2—Cu3—Br3	130.53 (17)	C19—C18—C17	122 (2)
Br2—Cu3—Cu1	56.09 (12)	C23—C18—C17	121 (2)
Br2—Cu3—Cu2 ⁱ	174.25 (17)	C23—C18—C19	117 (2)

Br3—Cu3—Br1	112.72 (15)	C20-C19-C18	119 (2)
Br3—Cu3—Cu1	173.23 (18)	C21—C20—C19	123 (2)
Br3—Cu3—Cu2 ⁱ	54.84 (11)	C20—C21—C22	120 (2)
Cu1—Cu3—Cu2 ⁱ	118.61 (15)	C23—C22—C21	119 (2)
C1—S1—Cu1	112.6 (8)	C18—C23—N4	118 (2)
C9—S2—Cu2 ^{iv}	111.9 (9)	C22—C23—N4	120 (2)
C17—S3—Cu2	114.8 (8)	C22—C23—C18	122 (2)
C25—S4—Cu1	112.3 (8)	N4—C25—S4	121.7 (17)
C1—N1—C15	121 (2)	N4—C25—C26	117.5 (19)
C1—N1—C16	121 (2)	C26—C25—S4	120.8 (15)
C16—N1—C15	117.5 (18)	C27—C26—C25	118 (2)
C7—N2—C8	116.6 (18)	C31—C26—C25	122 (2)
C9—N2—C7	122.2 (19)	C31—C26—C27	120 (2)
C9—N2—C8	121.2 (18)	C26—C27—C28	118 (2)
C17—N3—C31	120.9 (18)	C29—C28—C27	121 (3)
C17—N3—C32	120.9 (19)	C28—C29—C30	121 (2)
C32—N3—C31	118.1 (17)	C31—C30—C29	116 (3)
C23—N4—C24	118.1 (17)	C26—C31—N3	120.8 (18)
C25—N4—C23	121.5 (17)	C26—C31—C30	124 (2)
C25—N4—C24	120.1 (19)	C30—C31—N3	116 (2)
N1—C1—S1	121.9 (19)	N5—C33—C34	179 (3)
Cu1—S1—C1—N1	170.9 (17)	C11—C10—C15—C14	6 (4)
Cu1—S1—C1—C2	-7 (2)	C11—C12—C13—C14	-2 (4)
Cu1—S4—C25—N4	174.9 (18)	C12—C13—C14—C15	3 (4)
Cu1—S4—C25—C26	-3 (2)	C13—C14—C15—N1	180 (2)
Cu2 ^{iv} —S2—C9—N2	176.2 (16)	C13—C14—C15—C10	-5 (4)
Cu2 ^{iv} —S2—C9—C10	-4 (2)	C15—N1—C1—S1	-177.3 (17)
Cu2—S3—C17—N3	172.7 (17)	C15—N1—C1—C2	0 (3)
Cu2—S3—C17—C18	-10 (2)	C15—C10—C11—C12	-4 (4)
S1—C1—C2—C3	-70 (2)	C16—N1—C1—S1	3 (3)
S1—C1—C2—C7	105 (2)	C16—N1—C1—C2	-180 (2)
S2-C9-C10-C11	-70 (3)	C16—N1—C15—C10	-111 (3)
S2—C9—C10—C15	109 (2)	C16—N1—C15—C14	64 (3)
S3—C17—C18—C19	-65 (3)	C17—N3—C31—C26	73 (3)
S3—C17—C18—C23	112 (2)	C17—N3—C31—C30	-112 (2)
S4—C25—C26—C27	-63 (3)	C17—C18—C19—C20	175.8 (18)
S4—C25—C26—C31	115 (2)	C17—C18—C23—N4	1 (3)
N1—C1—C2—C3	112 (2)	C17—C18—C23—C22	-176.7 (18)
N1—C1—C2—C7	-73 (3)	C18—C19—C20—C21	0 (3)
N2-C9-C10-C11	110 (2)	C19—C18—C23—N4	177.5 (16)
-----------------	-------------	-----------------	-------------
N2-C9-C10-C15	-71 (3)	C19—C18—C23—C22	0 (3)
N3-C17-C18-C19	113 (2)	C19—C20—C21—C22	2 (3)
N3-C17-C18-C23	-70 (3)	C20—C21—C22—C23	-2 (3)
N4—C25—C26—C27	120 (2)	C21—C22—C23—N4	-176.0 (18)
N4-C25-C26-C31	-62 (3)	C21—C22—C23—C18	2 (3)
C1—N1—C15—C10	69 (3)	C23—N4—C25—S4	171.8 (18)
C1—N1—C15—C14	-116 (3)	C23—N4—C25—C26	-11 (3)
C1—C2—C3—C4	177.0 (19)	C23—C18—C19—C20	-1 (3)
C1—C2—C7—N2	4 (3)	C24—N4—C23—C18	-109 (2)
C1—C2—C7—C6	-175 (2)	C24—N4—C23—C22	68 (3)
C2—C3—C4—C5	-4 (3)	C24—N4—C25—S4	-2 (3)
C3—C2—C7—N2	178.9 (18)	C24—N4—C25—C26	175 (2)
C3—C2—C7—C6	0 (3)	C25—N4—C23—C18	77 (3)
C3—C4—C5—C6	3 (4)	C25—N4—C23—C22	-106 (3)
C4—C5—C6—C7	-2 (3)	C25—C26—C27—C28	180 (2)
C5—C6—C7—N2	-179.0 (19)	C25-C26-C31-N3	-2 (3)
C5—C6—C7—C2	0 (3)	C25—C26—C31—C30	-177 (2)
C7—N2—C9—S2	179.2 (16)	C26—C27—C28—C29	-5 (4)
C7—N2—C9—C10	-1 (3)	C27—C26—C31—N3	175.5 (18)
C7—C2—C3—C4	2 (3)	C27—C26—C31—C30	1 (3)
C8—N2—C7—C2	-113 (2)	C27—C28—C29—C30	4 (4)
C8—N2—C7—C6	66 (3)	C28—C29—C30—C31	-2 (4)
C8—N2—C9—S2	1 (3)	C29—C30—C31—N3	-176 (2)
C8—N2—C9—C10	-179 (2)	C29—C30—C31—C26	-1 (3)
C9—N2—C7—C2	68 (3)	C31—N3—C17—S3	176.5 (17)
C9—N2—C7—C6	-113 (3)	C31—N3—C17—C18	-1 (3)
C9—C10—C11—C12	175 (2)	C31—C26—C27—C28	2 (3)
C9—C10—C15—N1	2 (4)	C32—N3—C17—S3	-2 (3)
C9-C10-C15-C14	-173 (2)	C32—N3—C17—C18	180 (2)
C10-C11-C12-C13	2 (4)	C32—N3—C31—C26	-108 (2)
C11—C10—C15—N1	-180 (2)	C32—N3—C31—C30	67 (3)

Symmetry codes: (i) -*x*, *y*-1/2, -*z*; (ii) -*x*, *y*+1/2, -*z*; (iii) *x*-1, *y*, *z*-1; (iv) *x*+1, *y*, *z*+1.

Crystal data	for $[Cu_3Cl_3(mdta)_2(MeCN)_2]_n$ (5)	
--------------	--	--

$C_{32}H_{28}Cl_3Cu_3N_4S_4 \cdot 2(C_2H_3N)$	F(000) = 988
$M_r = 975.90$	$D_{\rm x} = 1.633 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å

a = 8.8353 (2) Å	Cell parameters from 28217 reflections
lb = 16.7129 (5) Å	$\theta = 0.6-29.6^{\circ}$
c = 13.6256 (4) Å	$\mu = 2.04 \text{ mm}^{-1}$
$\beta = 99.427 \ (2)^{\circ}$	T = 120 K
$V = 1984.83 (10) Å^3$	Block, pale green
Z = 2	$0.29 \times 0.11 \times 0.03 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	10633 independent reflections
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus	8879 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{max}=29.3^\circ,\theta_{min}=2.3^\circ$
rotation method, ω scans	$h = -12 \rightarrow 11$
Absorption correction: integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	<i>k</i> = -22→22
$T_{\min} = 0.656, T_{\max} = 0.906$	<i>l</i> = -6→18
10633 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.165$	$w = 1/[\sigma^2(F_o^2) + (0.1092P)^2 + 2.1782P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
10633 reflections	$\Delta \lambda_{\text{max}} = 1.03 \text{ e} \text{ Å}^{-3}$
476 parameters	$\Delta \rangle_{\min} = -1.20 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Flack x determined using 3638 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Primary atom site location: structure-invariant direct methods	Absolute structure parameter: 0.016 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters

$(Å^2)$ for [Cu₃Cl₃(mdta)₂(MeCN)₂]_n (5)

	x	У	z	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.17673 (11)	0.58321 (6)	-0.17927 (7)	0.0244 (2)
Cu2	0.27361 (13)	0.72633 (7)	-0.26127 (9)	0.0321 (3)
Cu3	0.87602 (12)	0.36836 (6)	0.22719 (7)	0.0257 (2)
C11	0.0580 (2)	0.72543 (12)	-0.18053 (15)	0.0234 (3)
C12	0.3708 (2)	0.60298 (12)	-0.27534 (14)	0.0241 (4)
C13	0.3426 (2)	0.84948 (12)	-0.30399 (15)	0.0260 (4)
S1	0.2243 (2)	0.54489 (12)	-0.01977 (14)	0.0236 (4)
S2	0.8123 (2)	0.39886 (11)	0.06217 (14)	0.0241 (4)
S 3	1.0873 (2)	0.41569 (12)	0.32358 (15)	0.0247 (4)
S4	0.9629 (2)	0.54654 (12)	0.71167 (14)	0.0222 (4)
N1	0.4625 (7)	0.5428 (4)	0.1247 (5)	0.0199 (12)
N2	0.6757 (7)	0.5217 (4)	-0.0383 (5)	0.0194 (12)
N3	1.2032 (7)	0.4253 (4)	0.5142 (5)	0.0206 (12)
N4	0.8910 (7)	0.4324 (4)	0.5782 (5)	0.0196 (12)
C1	0.4026 (9)	0.5713 (4)	0.0348 (5)	0.0199 (14)
C2	0.4958 (9)	0.6292 (5)	-0.0140 (5)	0.0203 (14)
C3	0.4488 (9)	0.7087 (4)	-0.0266 (6)	0.0218 (14)
Н3	0.356650	0.725698	-0.005495	0.026*
C4	0.5364 (9)	0.7627 (5)	-0.0696 (6)	0.0216 (14)
H4	0.504888	0.816980	-0.077247	0.026*
C5	0.6701 (9)	0.7382 (5)	-0.1017 (6)	0.0240 (15)
Н5	0.730550	0.775528	-0.130899	0.029*
C6	0.7149 (9)	0.6588 (5)	-0.0908 (6)	0.0223 (14)
H6	0.805367	0.641366	-0.113663	0.027*
C7	0.6285 (9)	0.6050 (5)	-0.0468 (5)	0.0199 (14)
C8	0.6623 (10)	0.4758 (5)	-0.1304 (6)	0.0273 (17)
H8A	0.595090	0.504224	-0.183443	0.041*
H8B	0.618606	0.423045	-0.120502	0.041*
H8C	0.764031	0.469200	-0.149056	0.041*

C9	0.7387 (8)	0.4920 (5)	0.0491 (6)	0.0200 (14)
C10	0.7464 (8)	0.5441 (4)	0.1384 (5)	0.0187 (13)
C11	0.8895 (9)	0.5675 (5)	0.1891 (6)	0.0253 (16)
H11	0.979802	0.551852	0.164695	0.030*
C12	0.9015 (10)	0.6134 (5)	0.2745 (6)	0.0256 (16)
H12	0.999468	0.629585	0.308149	0.031*
C13	0.7707 (11)	0.6356 (5)	0.3106 (6)	0.0297 (18)
H13	0.779298	0.667331	0.369058	0.036*
C14	0.6254 (9)	0.6121 (5)	0.2623 (6)	0.0248 (16)
H14	0.535769	0.624925	0.289138	0.030*
C15	0.6158 (8)	0.5691 (4)	0.1733 (5)	0.0197 (14)
C16	0.3766 (10)	0.4910 (5)	0.1819 (6)	0.0253 (16)
H16A	0.307233	0.523524	0.214657	0.038*
H16B	0.448102	0.462145	0.232197	0.038*
H16C	0.316628	0.452503	0.137106	0.038*
C17	1.0980 (8)	0.3912 (4)	0.4447 (6)	0.0199 (14)
C18	0.9969 (9)	0.3302 (4)	0.4782 (5)	0.0196 (14)
C19	0.9944 (9)	0.2511 (4)	0.4438 (6)	0.0214 (14)
H19	1.059203	0.235816	0.397821	0.026*
C20	0.8988 (9)	0.1952 (5)	0.4761 (6)	0.0232 (15)
H20	0.897896	0.141791	0.452135	0.028*
C21	0.8042 (9)	0.2165 (5)	0.5431 (6)	0.0240 (15)
H21	0.739346	0.177529	0.565490	0.029*
C22	0.8037 (9)	0.2944 (5)	0.5777 (6)	0.0227 (15)
H22	0.737988	0.309096	0.623320	0.027*
C23	0.8990 (8)	0.3504 (4)	0.5455 (6)	0.0202 (14)
C24	0.7513 (10)	0.4775 (6)	0.5379 (7)	0.0294 (18)
H24A	0.704780	0.454312	0.473944	0.044*
H24B	0.778059	0.533513	0.528202	0.044*
H24C	0.678204	0.474609	0.584637	0.044*
C25	0.9927 (9)	0.4607 (4)	0.6540 (6)	0.0205 (14)
C26	1.1349 (9)	0.4130 (4)	0.6835 (6)	0.0204 (14)
C27	1.1759 (11)	0.3866 (5)	0.7801 (6)	0.0292 (17)
H27	1.112151	0.399616	0.827595	0.035*
C28	1.3064 (11)	0.3418 (5)	0.8099 (7)	0.0327 (19)
H28	1.330528	0.323261	0.876527	0.039*
C29	1.4019 (10)	0.3243 (6)	0.7421 (7)	0.033 (2)
H29	1.492366	0.293768	0.762239	0.040*
C30	1.3662 (9)	0.3510 (5)	0.6444 (7)	0.0271 (17)
H30	1.431853	0.339138	0.597597	0.033*

C31	1.2325 (9)	0.3956 (5)	0.6160 (6)	0.0243 (16)
C32	1.3088 (9)	0.4869 (5)	0.4886 (6)	0.0254 (16)
H32A	1.383610	0.462264	0.452108	0.038*
H32B	1.362714	0.511691	0.549590	0.038*
H32C	1.250510	0.527827	0.446836	0.038*
N5	0.7359 (10)	0.2025 (7)	0.7910 (7)	0.048 (2)
C33	0.8427 (11)	0.2177 (6)	0.8471 (7)	0.0341 (19)
C34	0.9731 (12)	0.2385 (6)	0.9209 (7)	0.038 (2)
H34A	1.067833	0.227154	0.894797	0.056*
H34B	0.971188	0.206899	0.981257	0.056*
H34C	0.968870	0.295566	0.936688	0.056*
N6	0.4458 (13)	0.1523 (10)	0.5172 (8)	0.070 (4)
C35	0.4021 (11)	0.1854 (7)	0.4439 (8)	0.038 (2)
C36	0.3511 (12)	0.2226 (7)	0.3485 (9)	0.042 (2)
H36A	0.431504	0.217785	0.307179	0.063*
H36B	0.329311	0.279265	0.358250	0.063*
H36C	0.257719	0.195885	0.315463	0.063*

Atomic displacement parameters $(Å^2)$ for $[Cu_3Cl_3(mdta)_2(MeCN)_2]_n$ (5)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0258 (5)	0.0236 (5)	0.0220 (4)	-0.0045 (4)	-0.0015 (4)	-0.0003 (4)
Cu2	0.0330 (6)	0.0237 (5)	0.0393 (6)	-0.0005 (4)	0.0052 (5)	0.0005 (4)
Cu3	0.0287 (5)	0.0219 (5)	0.0239 (5)	-0.0019 (4)	-0.0031 (4)	0.0039 (4)
C11	0.0259 (8)	0.0170 (7)	0.0273 (9)	-0.0010 (7)	0.0041 (7)	-0.0007 (6)
C12	0.0231 (8)	0.0236 (9)	0.0245 (8)	0.0005 (7)	0.0009 (7)	0.0009 (7)
C13	0.0260 (9)	0.0220 (9)	0.0275 (9)	-0.0017 (7)	-0.0028 (7)	0.0012 (7)
S1	0.0201 (8)	0.0265 (9)	0.0227 (8)	-0.0053 (7)	-0.0005 (7)	0.0017 (7)
S2	0.0322 (10)	0.0161 (8)	0.0223 (8)	0.0056 (7)	-0.0006 (7)	0.0010 (7)
S 3	0.0261 (9)	0.0224 (9)	0.0241 (9)	-0.0043 (7)	-0.0001 (7)	0.0044 (7)
S4	0.0203 (8)	0.0192 (8)	0.0257 (8)	-0.0003 (7)	-0.0005 (7)	-0.0047 (7)
N1	0.022 (3)	0.017 (3)	0.020 (3)	-0.001 (2)	0.000 (2)	0.002 (2)
N2	0.019 (3)	0.018 (3)	0.020 (3)	0.002 (2)	0.001 (2)	0.000 (2)
N3	0.019 (3)	0.022 (3)	0.021 (3)	-0.001 (2)	0.004 (2)	0.001 (2)
N4	0.016 (3)	0.017 (3)	0.025 (3)	0.002 (2)	0.000 (2)	-0.001 (2)
C1	0.024 (3)	0.018 (3)	0.017 (3)	0.001 (3)	0.000 (3)	-0.002 (3)
C2	0.022 (3)	0.021 (3)	0.016 (3)	-0.004 (3)	-0.002 (3)	0.000 (3)
C3	0.027 (4)	0.017 (3)	0.020 (3)	0.001 (3)	0.001 (3)	0.000 (3)
C4	0.023 (3)	0.017 (3)	0.022 (3)	-0.003 (3)	-0.003 (3)	0.000 (3)
C5	0.027 (4)	0.021 (4)	0.023 (4)	-0.008 (3)	0.001 (3)	0.001 (3)
C6	0.019 (3)	0.025 (4)	0.022 (3)	0.001 (3)	0.001 (3)	0.005 (3)

C7	0.021 (3)	0.018 (3)	0.019 (3)	0.002 (3)	-0.005 (3)	0.002 (3)
C8	0.031 (4)	0.029 (4)	0.021 (4)	0.003 (3)	0.000 (3)	-0.007 (3)
C9	0.019 (3)	0.019 (3)	0.022 (3)	-0.002 (3)	0.002 (3)	0.002 (3)
C10	0.023 (3)	0.012 (3)	0.020 (3)	0.000 (3)	0.000 (3)	0.002 (3)
C11	0.025 (4)	0.024 (4)	0.024 (4)	-0.003 (3)	-0.005 (3)	0.001 (3)
C12	0.027 (4)	0.022 (3)	0.024 (4)	-0.001 (3)	-0.005 (3)	0.000 (3)
C13	0.038 (5)	0.024 (4)	0.024 (4)	-0.004 (3)	-0.005 (3)	-0.004 (3)
C14	0.021 (3)	0.035 (4)	0.019 (3)	0.003 (3)	0.004 (3)	-0.005 (3)
C15	0.022 (3)	0.020 (3)	0.015 (3)	0.000 (3)	-0.002 (3)	0.001 (3)
C16	0.025 (4)	0.027 (4)	0.023 (4)	-0.003 (3)	0.003 (3)	0.007 (3)
C17	0.016 (3)	0.011 (3)	0.030 (4)	0.001 (2)	-0.002 (3)	0.003 (3)
C18	0.021 (3)	0.018 (3)	0.016 (3)	0.000 (3)	-0.006 (3)	0.002 (3)
C19	0.022 (3)	0.016 (3)	0.025 (3)	-0.001 (3)	-0.003 (3)	0.000 (3)
C20	0.025 (4)	0.018 (3)	0.024 (3)	-0.003 (3)	-0.002 (3)	0.000 (3)
C21	0.022 (3)	0.019 (4)	0.029 (4)	-0.006 (3)	-0.004 (3)	0.003 (3)
C22	0.022 (3)	0.023 (4)	0.022 (3)	-0.004 (3)	0.001 (3)	0.002 (3)
C23	0.018 (3)	0.018 (3)	0.023 (3)	-0.002 (3)	-0.004 (3)	0.000 (3)
C24	0.022 (4)	0.030 (4)	0.033 (4)	0.010 (3)	-0.008 (3)	-0.002 (3)
C25	0.022 (3)	0.017 (3)	0.022 (3)	-0.001 (3)	0.002 (3)	0.006 (3)
C26	0.023 (3)	0.012 (3)	0.024 (3)	-0.001 (3)	-0.002 (3)	0.000 (3)
C27	0.035 (4)	0.019 (4)	0.030 (4)	0.000 (3)	-0.005 (3)	0.000 (3)
C28	0.038 (5)	0.022 (4)	0.033 (4)	-0.003 (3)	-0.010 (4)	0.008 (3)
C29	0.023 (4)	0.028 (4)	0.043 (5)	0.003 (3)	-0.013 (4)	0.002 (4)
C30	0.019 (3)	0.021 (4)	0.037 (4)	0.001 (3)	-0.006 (3)	-0.006 (3)
C31	0.027 (4)	0.013 (3)	0.028 (4)	-0.002 (3)	-0.009 (3)	-0.005 (3)
C32	0.022 (3)	0.026 (4)	0.030 (4)	-0.006 (3)	0.008 (3)	-0.002 (3)
N5	0.029 (4)	0.068 (7)	0.047 (5)	0.006 (4)	0.003 (4)	0.019 (5)
C33	0.038 (5)	0.031 (4)	0.036 (5)	0.008 (4)	0.013 (4)	0.010 (4)
C34	0.047 (6)	0.034 (5)	0.032 (5)	0.005 (4)	0.010 (4)	0.001 (4)
N6	0.044 (5)	0.123 (12)	0.041 (5)	-0.017 (7)	0.005 (5)	0.015 (7)
C35	0.024 (4)	0.052 (6)	0.040 (5)	-0.007 (4)	0.011 (4)	-0.013 (5)
C36	0.032 (5)	0.041 (5)	0.056 (6)	0.007 (4)	0.017 (4)	0.009 (5)

Geometric parameters (Å, °) for $[Cu_3Cl_3(mdta)_2(MeCN)_2]_n$ (5)

Cu1—Cu2	2.8312 (15)	C12—H12	0.9500
Cu1—Cl1	2.597 (2)	C12—C13	1.379 (13)
Cu1—Cl2	2.345 (2)	С13—Н13	0.9500
Cu1—S1	2.238 (2)	C13—C14	1.399 (11)
Cu1—S4 ⁱ	2.288 (2)	C14—H14	0.9500
Cu2—Cu3 ⁱⁱ	2.7927 (15)	C14—C15	1.400 (10)

Cu2—Cl1	2.351 (2)	C16—H16A	0.9800
Cu2—Cl2	2.254 (2)	C16—H16B	0.9800
Cu2—Cl3	2.250 (2)	C16—H16C	0.9800
Cu3—Cl1 ⁱⁱⁱ	2.564 (2)	C17—C18	1.476 (10)
Cu3—Cl3 ⁱⁱⁱ	2.364 (2)	C18—C19	1.403 (10)
Cu3—S2	2.284 (2)	C18—C23	1.400 (11)
Cu3—S3	2.243 (2)	C19—H19	0.9500
S1—C1	1.687 (8)	C19—C20	1.379 (11)
S2—C9	1.685 (8)	C20—H20	0.9500
S3—C17	1.688 (8)	C20—C21	1.381 (12)
S4—C25	1.677 (8)	C21—H21	0.9500
N1—C1	1.339 (9)	C21—C22	1.385 (11)
N1—C15	1.474 (9)	C22—H22	0.9500
N1—C16	1.458 (10)	C22—C23	1.379 (10)
N2—C7	1.452 (10)	C24—H24A	0.9800
N2—C8	1.460 (10)	C24—H24B	0.9800
N2—C9	1.325 (10)	C24—H24C	0.9800
N3—C17	1.341 (10)	C25—C26	1.487 (10)
N3—C31	1.456 (10)	C26—C27	1.380 (11)
N3—C32	1.470 (10)	C26—C31	1.390 (12)
N4—C23	1.446 (9)	С27—Н27	0.9500
N4—C24	1.474 (9)	C27—C28	1.379 (13)
N4—C25	1.339 (10)	C28—H28	0.9500
C1—C2	1.496 (11)	C28—C29	1.381 (15)
С2—С3	1.394 (10)	C29—H29	0.9500
C2—C7	1.383 (11)	C29—C30	1.391 (13)
С3—Н3	0.9500	С30—Н30	0.9500
C3—C4	1.380 (11)	C30—C31	1.397 (11)
C4—H4	0.9500	C32—H32A	0.9800
C4—C5	1.387 (12)	C32—H32B	0.9800
С5—Н5	0.9500	C32—H32C	0.9800
С5—С6	1.386 (11)	N5—C33	1.141 (14)
С6—Н6	0.9500	C33—C34	1.442 (15)
С6—С7	1.377 (11)	C34—H34A	0.9800
C8—H8A	0.9800	C34—H34B	0.9800
C8—H8B	0.9800	C34—H34C	0.9800
C8—H8C	0.9800	N6—C35	1.152 (16)
C9—C10	1.488 (10)	C35—C36	1.444 (16)
C10—C11	1.394 (10)	C36—H36A	0.9800
C10—C15	1.383 (11)	C36—H36B	0.9800

C11—H11	0.9500	С36—Н36С	0.9800
C11—C12	1.383 (11)		
Cl1—Cu1—Cu2	51.11 (5)	С11—С12—Н12	120.1
Cl2—Cu1—Cu2	50.56 (6)	C13—C12—C11	119.7 (8)
Cl2—Cu1—Cl1	101.48 (7)	С13—С12—Н12	120.1
S1—Cu1—Cu2	127.16 (7)	С12—С13—Н13	119.5
S1—Cu1—Cl1	106.24 (8)	C12-C13-C14	121.0 (8)
S1—Cu1—Cl2	122.96 (8)	С14—С13—Н13	119.5
S1—Cu1—S4 ⁱ	123.91 (8)	C13—C14—H14	120.9
S4 ⁱ —Cu1—Cu2	103.94 (7)	C13—C14—C15	118.2 (7)
S4 ⁱ —Cu1—Cl1	87.20 (7)	C15—C14—H14	120.9
S4 ⁱ —Cu1—Cl2	106.07 (8)	C10-C15-N1	120.8 (6)
Cu3 ⁱⁱ —Cu2—Cu1	118.07 (5)	C10-C15-C14	121.2 (7)
Cl1—Cu2—Cu1	59.29 (6)	C14—C15—N1	117.6 (7)
Cl1—Cu2—Cu3 ⁱⁱ	59.05 (6)	N1—C16—H16A	109.5
Cl2—Cu2—Cu1	53.47 (6)	N1—C16—H16B	109.5
Cl2—Cu2—Cu3 ⁱⁱ	171.54 (8)	N1—C16—H16C	109.5
Cl2—Cu2—Cl1	112.54 (8)	H16A—C16—H16B	109.5
Cl3—Cu2—Cu1	170.79 (8)	H16A—C16—H16C	109.5
Cl3—Cu2—Cu3 ⁱⁱ	54.63 (6)	H16B—C16—H16C	109.5
Cl3—Cu2—Cl1	113.67 (8)	N3—C17—S3	120.6 (6)
Cl3—Cu2—Cl2	133.76 (9)	N3—C17—C18	117.4 (7)
Cl1 ⁱⁱⁱ —Cu3—Cu2 ⁱⁱⁱ	51.86 (5)	C18—C17—S3	122.0 (5)
Cl3 ⁱⁱⁱ —Cu3—Cu2 ⁱⁱⁱ	50.91 (6)	C19—C18—C17	121.7 (7)
Cl3 ⁱⁱⁱ —Cu3—Cl1 ⁱⁱⁱ	102.77 (7)	C23—C18—C17	120.4 (7)
S2—Cu3—Cu2 ⁱⁱⁱ	107.83 (7)	C23—C18—C19	117.9 (7)
S2—Cu3—Cl1 ⁱⁱⁱ	89.61 (7)	C18—C19—H19	119.7
S2—Cu3—Cl3 ⁱⁱⁱ	112.21 (8)	C20—C19—C18	120.6 (8)
S3—Cu3—Cu2 ⁱⁱⁱ	125.00 (7)	С20—С19—Н19	119.7
S3—Cu3—Cl1 ⁱⁱⁱ	105.81 (8)	С19—С20—Н20	119.8
S3—Cu3—Cl3 ⁱⁱⁱ	116.73 (8)	C19—C20—C21	120.4 (8)
S3—Cu3—S2	123.02 (9)	С21—С20—Н20	119.8
Cu2—Cl1—Cu1	69.60 (6)	C20—C21—H21	119.9
Cu2—Cl1—Cu3 ⁱⁱ	69.10 (6)	C20—C21—C22	120.2 (7)
Cu3 ⁱⁱ —Cl1—Cu1	138.27 (8)	C22—C21—H21	119.9
Cu2—Cl2—Cu1	75.97 (7)	C21—C22—H22	120.2
Cu2—Cl3—Cu3 ⁱⁱ	74.46 (7)	C23—C22—C21	119.6 (8)
C1—S1—Cu1	111.5 (3)	C23—C22—H22	120.2
C9—S2—Cu3	109.8 (3)	C18—C23—N4	119.8 (7)

C17—S3—Cu3	113.3 (3)	C22—C23—N4	118.8 (7)
C25—S4—Cu1 ^{iv}	110.9 (3)	C22—C23—C18	121.3 (7)
C1—N1—C15	120.1 (6)	N4—C24—H24A	109.5
C1—N1—C16	122.4 (6)	N4—C24—H24B	109.5
C16—N1—C15	117.3 (6)	N4—C24—H24C	109.5
C7—N2—C8	116.9 (6)	H24A—C24—H24B	109.5
C9—N2—C7	120.3 (6)	H24A—C24—H24C	109.5
C9—N2—C8	122.6 (7)	H24B—C24—H24C	109.5
C17—N3—C31	121.5 (6)	N4	121.8 (6)
C17—N3—C32	121.6 (7)	N4—C25—C26	116.7 (7)
C31—N3—C32	116.4 (6)	C26—C25—S4	121.5 (6)
C23—N4—C24	116.7 (6)	C27—C26—C25	120.5 (8)
C25—N4—C23	120.8 (6)	C27—C26—C31	118.0 (7)
C25—N4—C24	121.4 (7)	C31—C26—C25	121.5 (7)
N1—C1—S1	120.7 (6)	С26—С27—Н27	119.0
N1—C1—C2	118.2 (7)	C28—C27—C26	122.0 (9)
C2-C1-S1	121.0 (5)	С28—С27—Н27	119.0
C3—C2—C1	119.8 (7)	С27—С28—Н28	120.3
C7—C2—C1	120.8 (7)	C27—C28—C29	119.4 (8)
C7—C2—C3	119.4 (7)	С29—С28—Н28	120.3
С2—С3—Н3	120.0	С28—С29—Н29	119.8
C4—C3—C2	119.9 (8)	C28—C29—C30	120.3 (8)
С4—С3—Н3	120.0	С30—С29—Н29	119.8
С3—С4—Н4	119.8	С29—С30—Н30	120.5
C3—C4—C5	120.5 (7)	C29—C30—C31	119.0 (9)
С5—С4—Н4	119.8	С31—С30—Н30	120.5
C4—C5—H5	120.3	C26—C31—N3	121.7 (7)
C6—C5—C4	119.4 (7)	C26—C31—C30	121.2 (8)
С6—С5—Н5	120.3	C30—C31—N3	117.1 (8)
С5—С6—Н6	119.9	N3—C32—H32A	109.5
C7—C6—C5	120.2 (7)	N3—C32—H32B	109.5
С7—С6—Н6	119.9	N3—C32—H32C	109.5
C2—C7—N2	120.1 (7)	H32A—C32—H32B	109.5
C6—C7—N2	119.2 (7)	H32A—C32—H32C	109.5
C6—C7—C2	120.6 (7)	H32B—C32—H32C	109.5
N2—C8—H8A	109.5	N5—C33—C34	177.4 (11)
N2—C8—H8B	109.5	C33—C34—H34A	109.5
N2—C8—H8C	109.5	C33—C34—H34B	109.5
H8A—C8—H8B	109.5	C33—C34—H34C	109.5
H8A—C8—H8C	109.5	H34A—C34—H34B	109.5

H8B—C8—H8C	109.5	H34A—C34—H34C	109.5
N2—C9—S2	122.6 (6)	H34B—C34—H34C	109.5
N2-C9-C10	118.1 (7)	N6-C35-C36	176.2 (13)
C10—C9—S2	119.2 (5)	С35—С36—Н36А	109.5
С11—С10—С9	119.1 (7)	С35—С36—Н36В	109.5
C15—C10—C9	122.0 (6)	С35—С36—Н36С	109.5
C15—C10—C11	119.0 (7)	H36A—C36—H36B	109.5
C10-C11-H11	119.6	H36A—C36—H36C	109.5
C12—C11—C10	120.8 (8)	H36B—C36—H36C	109.5
C12—C11—H11	119.6		
Cu1—S1—C1—N1	-169.0 (5)	C11—C10—C15—C14	-5.0 (11)
Cu1—S1—C1—C2	13.1 (7)	C11—C12—C13—C14	0.3 (13)
Cu1 ^{iv} —S4—C25—N4	-171.8 (6)	C12—C13—C14—C15	-3.4 (13)
Cu1 ^{iv} —S4—C25—C26	7.2 (7)	C13—C14—C15—N1	178.3 (7)
Cu3—S2—C9—N2	-171.9 (6)	C13—C14—C15—C10	5.8 (12)
Cu3—S2—C9—C10	9.1 (7)	C15—N1—C1—S1	-177.4 (5)
Cu3—S3—C17—N3	-169.1 (5)	C15—N1—C1—C2	0.6 (10)
Cu3—S3—C17—C18	12.8 (7)	C15—C10—C11—C12	1.7 (11)
S1—C1—C2—C3	66.4 (9)	C16—N1—C1—S1	-2.8 (10)
S1—C1—C2—C7	-113.8 (7)	C16—N1—C1—C2	175.2 (7)
S2—C9—C10—C11	64.2 (9)	C16—N1—C15—C10	113.6 (8)
S2—C9—C10—C15	-115.1 (7)	C16—N1—C15—C14	-58.9 (10)
S3—C17—C18—C19	59.0 (9)	C17—N3—C31—C26	-77.9 (10)
S3—C17—C18—C23	-120.5 (7)	C17—N3—C31—C30	104.3 (9)
S4—C25—C26—C27	56.8 (10)	C17—C18—C19—C20	-179.9 (7)
S4—C25—C26—C31	-121.4 (7)	C17—C18—C23—N4	3.3 (10)
N1—C1—C2—C3	-111.5 (8)	C17—C18—C23—C22	-180.0 (7)
N1—C1—C2—C7	68.2 (10)	C18—C19—C20—C21	-0.1 (11)
N2-C9-C10-C11	-114.9 (8)	C19—C18—C23—N4	-176.3 (6)
N2-C9-C10-C15	65.9 (10)	C19—C18—C23—C22	0.5 (10)
N3—C17—C18—C19	-119.0 (8)	C19—C20—C21—C22	0.6 (11)
N3—C17—C18—C23	61.4 (9)	C20—C21—C22—C23	-0.5 (12)
N4—C25—C26—C27	-124.1 (8)	C21—C22—C23—N4	176.8 (7)
N4-C25-C26-C31	57.7 (10)	C21—C22—C23—C18	0.0 (11)
C1—N1—C15—C10	-71.5 (9)	C23—N4—C25—S4	-164.8 (6)
C1—N1—C15—C14	116.0 (8)	C23—N4—C25—C26	16.2 (11)
C1—C2—C3—C4	178.5 (6)	C23—C18—C19—C20	-0.4 (10)
C1—C2—C7—N2	2.8 (11)	C24—N4—C23—C18	106.9 (8)
C1—C2—C7—C6	-179.2 (7)	C24—N4—C23—C22	-69.9 (10)

C2—C3—C4—C5	0.8 (11)	C24—N4—C25—S4	3.5 (11)
C3—C2—C7—N2	-177.4 (6)	C24—N4—C25—C26	-175.6 (7)
C3—C2—C7—C6	0.6 (11)	C25—N4—C23—C18	-84.3 (9)
C3—C4—C5—C6	0.4 (11)	C25—N4—C23—C22	98.9 (9)
C4—C5—C6—C7	-1.1 (12)	C25—C26—C27—C28	179.6 (8)
C5—C6—C7—N2	178.6 (7)	C25—C26—C31—N3	2.1 (11)
C5—C6—C7—C2	0.6 (11)	C25—C26—C31—C30	179.8 (7)
C7—N2—C9—S2	-173.6 (6)	C26—C27—C28—C29	1.6 (13)
C7—N2—C9—C10	5.4 (10)	C27—C26—C31—N3	-176.2 (7)
C7—C2—C3—C4	-1.3 (11)	C27—C26—C31—C30	1.5 (11)
C8—N2—C7—C2	109.0 (8)	C27—C28—C29—C30	-0.4 (13)
C8—N2—C7—C6	-69.0 (9)	C28—C29—C30—C31	-0.2 (13)
C8—N2—C9—S2	1.1 (11)	C29—C30—C31—N3	177.4 (7)
C8—N2—C9—C10	-179.9 (7)	C29—C30—C31—C26	-0.4 (12)
C9—N2—C7—C2	-76.1 (9)	C31—N3—C17—S3	-169.2 (6)
C9—N2—C7—C6	106.0 (9)	C31—N3—C17—C18	8.9 (11)
C9—C10—C11—C12	-177.6 (7)	C31—C26—C27—C28	-2.1 (12)
C9—C10—C15—N1	2.0 (11)	C32—N3—C17—S3	2.2 (10)
C9—C10—C15—C14	174.3 (7)	C32—N3—C17—C18	-179.7 (7)
C10-C11-C12-C13	0.6 (12)	C32—N3—C31—C26	110.2 (8)
C11—C10—C15—N1	-177.3 (7)	C32—N3—C31—C30	-67.6 (9)

Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, y+1/2, -z; (iii) -x+1, y-1/2, -z; (iv) x+1, y, z+1.

Crystal data for $[Cu_3Cl_4\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (7)

$C_{32}H_{28}Cl_4Cu_3N_4S_4\cdot C_2H_3N$	F(000) = 978
$M_r = 970.30$	$D_{\rm x} = 1.707 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
<i>a</i> = 8.7179 (9) Å	Cell parameters from 885 reflections
b = 16.8411 (17) Å	$\theta = 2.4 - 29.0^{\circ}$
c = 12.8872 (13) Å	$\mu = 2.21 \text{ mm}^{-1}$
$\beta = 94.018 \ (8)^{\circ}$	T = 120 K
V = 1887.4 (3) Å ³	Prism, black
Z = 2	$0.41 \times 0.32 \times 0.16 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	10114 independent reflections
Radiation source: GeniX Mo, 0.05 x 0.05 mm2	9422 reflections with $I > 2\sigma(I)$

microfocus	
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.033$
rotation method, ω scans	$\theta_{max} = 29.2^{\circ}, \ \theta_{min} = 2.0^{\circ}$
Absorption correction: multi-scan STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	$h = -11 \rightarrow 11$
$T_{\min} = 0.105, T_{\max} = 0.505$	<i>k</i> = -23→23
26594 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.102$	$w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 1.3569P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{max} < 0.001$
10114 reflections	$\Delta \rangle_{\text{max}} = 1.32 \text{ e} \text{ Å}^{-3}$
456 parameters	$\Delta \rangle_{\min} = -0.81 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Classical Flack method preferred over Parsons because s.u. lower.
Primary atom site location: dual	Absolute structure parameter: 0.003 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for $[Cu_3Cl_4\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (7)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.21467 (7)	0.44867 (4)	0.30693 (4)	0.01915 (13)
Cu2	-0.14244 (7)	0.65765 (3)	-0.26056 (4)	0.02029 (13)
Cu3	0.39761 (7)	0.30104 (4)	0.18048 (5)	0.01905 (13)
C11	0.36926 (14)	0.16587 (7)	0.17133 (9)	0.0223 (2)
C12	0.59563 (16)	0.29878 (10)	0.08038 (11)	0.0340 (3)

C13	0.18425 (14)	0.30307 (7)	0.28088 (9)	0.0195 (2)
Cl4	0.42031 (13)	0.43569 (7)	0.20108 (9)	0.0215 (2)
S1	0.24272 (13)	0.48113 (8)	0.47447 (9)	0.0192 (2)
S2	0.80510 (16)	0.63139 (7)	0.56640 (9)	0.0222 (2)
S3	-0.00410 (13)	0.47530 (7)	0.20539 (9)	0.0190 (2)
S4	0.08337 (14)	0.62113 (7)	-0.18194 (9)	0.0204 (2)
N1	0.4634 (4)	0.4796 (2)	0.6253 (3)	0.0162 (7)
N2	0.6965 (4)	0.5098 (2)	0.4548 (3)	0.0153 (7)
N3	-0.1094 (4)	0.5958 (2)	0.0928 (3)	0.0164 (7)
N4	0.2133 (4)	0.6157 (2)	0.0090 (3)	0.0162 (7)
C1	0.4158 (5)	0.4541 (3)	0.5306 (3)	0.0146 (7)
C2	0.5192 (5)	0.3993 (3)	0.4774 (3)	0.0144 (8)
C3	0.4778 (5)	0.3198 (3)	0.4598 (3)	0.0171 (8)
Н3	0.386389	0.299324	0.485702	0.021*
C4	0.5714 (6)	0.2711 (3)	0.4041 (4)	0.0204 (9)
H4	0.543499	0.217087	0.392873	0.024*
C5	0.7043 (6)	0.2998 (3)	0.3646 (4)	0.0212 (9)
Н5	0.766198	0.265992	0.325870	0.025*
C6	0.7464 (6)	0.3788 (3)	0.3824 (4)	0.0198 (9)
Н6	0.837513	0.399221	0.355996	0.024*
C7	0.6547 (5)	0.4273 (3)	0.4388 (3)	0.0151 (8)
C8	0.6855 (6)	0.5620 (3)	0.3628 (4)	0.0217 (9)
H8A	0.634117	0.611580	0.379879	0.033*
H8B	0.626169	0.535327	0.305595	0.033*
H8C	0.789026	0.573784	0.341905	0.033*
C9	0.7461 (5)	0.5374 (3)	0.5481 (3)	0.0154 (8)
C10	0.7464 (5)	0.4825 (3)	0.6380 (3)	0.0145 (8)
C11	0.8864 (5)	0.4621 (3)	0.6920 (4)	0.0198 (9)
H11	0.980646	0.479671	0.667143	0.024*
C12	0.8874 (6)	0.4161 (3)	0.7817 (4)	0.0249 (10)
H12	0.982458	0.400997	0.816608	0.030*
C13	0.7496 (7)	0.3922 (3)	0.8204 (4)	0.0277 (11)
H13	0.750705	0.362301	0.882936	0.033*
C14	0.6102 (6)	0.4123 (3)	0.7675 (4)	0.0229 (10)
H14	0.516234	0.395693	0.793714	0.028*
C15	0.6084 (5)	0.4562 (3)	0.6768 (3)	0.0157 (8)
C16	0.3642 (6)	0.5304 (3)	0.6855 (4)	0.0233 (10)
H16A	0.322502	0.573708	0.641282	0.035*
H16B	0.424679	0.552509	0.745619	0.035*
H16C	0.279407	0.498618	0.709565	0.035*

C17	0.0011 (5)	0.5678 (3)	0.1588 (3)	0.0139 (8)
C18	0.1355 (5)	0.6197 (3)	0.1884 (3)	0.0145 (8)
C19	0.1655 (6)	0.6422 (3)	0.2922 (4)	0.0191 (9)
H19	0.096596	0.627427	0.342759	0.023*
C20	0.2965 (6)	0.6862 (3)	0.3212 (4)	0.0247 (10)
H20	0.316030	0.702008	0.391633	0.030*
C21	0.3989 (6)	0.7072 (3)	0.2483 (4)	0.0237 (10)
H21	0.488673	0.736819	0.269011	0.028*
C22	0.3702 (5)	0.6850 (3)	0.1447 (4)	0.0195 (9)
H22	0.439996	0.699159	0.094433	0.023*
C23	0.2381 (5)	0.6419 (3)	0.1157 (3)	0.0151 (8)
C24	0.3272 (6)	0.5599 (3)	-0.0291 (4)	0.0222 (10)
H24A	0.274897	0.521485	-0.076516	0.033*
H24B	0.378763	0.531628	0.030056	0.033*
H24C	0.403491	0.589373	-0.065973	0.033*
C25	0.1021 (5)	0.6461 (3)	-0.0558 (3)	0.0160 (8)
C26	-0.0062 (5)	0.7033 (3)	-0.0114 (3)	0.0148 (8)
C27	-0.0099 (5)	0.7823 (3)	-0.0445 (3)	0.0174 (8)
H27	0.060667	0.800521	-0.092065	0.021*
C28	-0.1179 (6)	0.8341 (3)	-0.0072 (4)	0.0205 (9)
H28	-0.121077	0.887881	-0.029652	0.025*
C29	-0.2209 (6)	0.8076 (3)	0.0628 (4)	0.0229 (9)
H29	-0.295034	0.843134	0.087105	0.027*
C30	-0.2162 (5)	0.7297 (3)	0.0971 (4)	0.0197 (9)
H30	-0.285263	0.711775	0.145920	0.024*
C31	-0.1093 (5)	0.6782 (3)	0.0594 (3)	0.0162 (8)
C32	-0.2420 (6)	0.5468 (3)	0.0555 (4)	0.0235 (10)
H32A	-0.205351	0.498557	0.022623	0.035*
H32B	-0.307424	0.576987	0.004693	0.035*
H32C	-0.301503	0.532172	0.114403	0.035*
N5	-0.2577 (6)	0.8188 (4)	0.3156 (4)	0.0391 (13)
C33	-0.1535 (6)	0.8101 (4)	0.3727 (4)	0.0268 (11)
C34	-0.0220 (7)	0.8001 (4)	0.4481 (5)	0.0307 (11)
H34A	0.070593	0.821076	0.418898	0.046*
H34B	-0.007665	0.743574	0.463914	0.046*
H34C	-0.040675	0.828993	0.511989	0.046*

Atomic displacement parameters (A^2) for $[Cu_3Cl_4\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (7)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0207 (3)	0.0206 (3)	0.0157 (2)	0.0016 (2)	-0.0024 (2)	0.0010 (2)

Cu2	0.0235 (3)	0.0191 (3)	0.0174 (3)	0.0006 (2)	-0.0048 (2)	-0.0019 (2)
Cu3	0.0193 (3)	0.0217 (3)	0.0160 (2)	0.0003 (2)	-0.00011 (19)	-0.0021 (2)
Cl1	0.0242 (5)	0.0211 (5)	0.0213 (5)	0.0048 (4)	-0.0010 (4)	-0.0039 (4)
C12	0.0261 (6)	0.0460 (8)	0.0310 (6)	-0.0035 (6)	0.0094 (5)	-0.0109 (6)
C13	0.0241 (5)	0.0156 (4)	0.0186 (5)	-0.0010 (4)	0.0002 (4)	-0.0006 (4)
Cl4	0.0213 (5)	0.0226 (6)	0.0205 (5)	-0.0020 (4)	0.0013 (4)	0.0019 (4)
S1	0.0189 (5)	0.0223 (5)	0.0161 (5)	0.0048 (4)	-0.0019 (4)	-0.0014 (4)
S2	0.0351 (6)	0.0144 (5)	0.0164 (5)	-0.0050 (5)	-0.0036 (4)	-0.0004 (4)
S3	0.0187 (5)	0.0176 (5)	0.0202 (5)	-0.0017 (4)	-0.0021 (4)	0.0037 (4)
S4	0.0220 (5)	0.0245 (6)	0.0144 (5)	0.0070 (4)	-0.0018 (4)	-0.0044 (4)
N1	0.0149 (16)	0.0196 (17)	0.0141 (16)	-0.0012 (14)	0.0004 (13)	-0.0047 (14)
N2	0.0177 (17)	0.0158 (17)	0.0121 (16)	-0.0022 (14)	-0.0016 (13)	0.0001 (13)
N3	0.0134 (16)	0.0193 (19)	0.0161 (16)	-0.0025 (14)	-0.0011 (13)	0.0015 (14)
N4	0.0135 (16)	0.0215 (18)	0.0134 (16)	0.0011 (14)	0.0005 (13)	0.0012 (14)
C1	0.0177 (19)	0.0131 (18)	0.0129 (17)	-0.0008 (16)	0.0010 (14)	0.0009 (15)
C2	0.018 (2)	0.0143 (18)	0.0106 (17)	0.0033 (16)	-0.0034 (15)	-0.0010 (15)
C3	0.0165 (19)	0.018 (2)	0.0167 (19)	0.0002 (16)	-0.0026 (15)	-0.0005 (16)
C4	0.024 (2)	0.016 (2)	0.019 (2)	0.0015 (18)	-0.0061 (17)	-0.0055 (17)
C5	0.026 (2)	0.020 (2)	0.018 (2)	0.0060 (18)	-0.0006 (16)	-0.0023 (17)
C6	0.019 (2)	0.026 (2)	0.0149 (19)	0.0020 (18)	0.0006 (16)	-0.0011 (17)
C7	0.018 (2)	0.0153 (19)	0.0110 (17)	-0.0011 (15)	-0.0031 (15)	-0.0010 (14)
C8	0.028 (2)	0.024 (2)	0.0128 (19)	-0.0042 (19)	-0.0010 (17)	0.0025 (16)
C9	0.0143 (19)	0.0156 (19)	0.0162 (19)	0.0005 (15)	0.0010 (15)	-0.0017 (16)
C10	0.0181 (19)	0.0115 (17)	0.0132 (18)	-0.0017 (16)	-0.0029 (15)	-0.0019 (15)
C11	0.020 (2)	0.019 (2)	0.019 (2)	-0.0017 (17)	-0.0057 (16)	-0.0006 (16)
C12	0.028 (2)	0.021 (2)	0.024 (2)	0.0009 (19)	-0.013 (2)	0.0016 (19)
C13	0.041 (3)	0.024 (2)	0.017 (2)	-0.005 (2)	-0.010 (2)	0.0046 (18)
C14	0.033 (3)	0.020 (2)	0.016 (2)	-0.0056 (19)	0.0000 (19)	0.0012 (17)
C15	0.0179 (19)	0.0154 (19)	0.0131 (17)	-0.0011 (16)	-0.0032 (14)	-0.0028 (15)
C16	0.022 (2)	0.029 (3)	0.019 (2)	0.0012 (19)	0.0026 (18)	-0.0081 (19)
C17	0.0132 (18)	0.0168 (19)	0.0120 (18)	-0.0011 (15)	0.0023 (15)	-0.0013 (14)
C18	0.0150 (19)	0.0142 (19)	0.0141 (18)	-0.0008 (15)	-0.0011 (15)	0.0026 (15)
C19	0.023 (2)	0.020 (2)	0.0138 (18)	-0.0014 (17)	-0.0016 (16)	0.0006 (15)
C20	0.031 (3)	0.021 (2)	0.020 (2)	-0.0012 (19)	-0.0102 (19)	-0.0018 (18)
C21	0.020 (2)	0.021 (2)	0.028 (2)	-0.0018 (18)	-0.0106 (19)	0.0038 (19)
C22	0.016 (2)	0.018 (2)	0.023 (2)	-0.0019 (16)	-0.0038 (17)	0.0053 (17)
C23	0.0118 (18)	0.018 (2)	0.0156 (18)	0.0019 (15)	-0.0021 (14)	0.0029 (15)
C24	0.017 (2)	0.031 (3)	0.019 (2)	0.0081 (18)	0.0040 (17)	0.0048 (18)
C25	0.0147 (18)	0.018 (2)	0.0149 (18)	0.0004 (16)	0.0008 (15)	0.0015 (16)

C26	0.0150 (18)	0.0176 (19)	0.0113 (17)	0.0015 (15)	-0.0029 (14)	-0.0018 (15)
C27	0.020 (2)	0.019 (2)	0.0128 (18)	0.0012 (17)	-0.0023 (15)	-0.0016 (15)
C28	0.024 (2)	0.020 (2)	0.017 (2)	0.0053 (18)	-0.0054 (17)	-0.0029 (17)
C29	0.021 (2)	0.027 (2)	0.020 (2)	0.0090 (19)	-0.0028 (16)	-0.0064 (19)
C30	0.015 (2)	0.027 (2)	0.0171 (19)	0.0019 (17)	0.0014 (15)	-0.0023 (18)
C31	0.0141 (18)	0.021 (2)	0.0130 (18)	0.0021 (16)	-0.0030 (15)	-0.0023 (15)
C32	0.017 (2)	0.028 (2)	0.025 (2)	-0.0063 (18)	-0.0062 (18)	0.0020 (19)
N5	0.031 (3)	0.058 (4)	0.029 (2)	-0.001 (2)	0.0016 (19)	-0.017 (2)
C33	0.022 (2)	0.033 (3)	0.027 (2)	-0.007 (2)	0.0097 (19)	-0.012 (2)
C34	0.028 (3)	0.029 (3)	0.035 (3)	-0.002 (2)	0.000 (2)	0.000 (2)

Geometric parameters (Å, °) for $[Cu_3Cl_4\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (7)

Cu1—Cl3	2.4867 (14)	C11—H11	0.9500
Cu1—Cl4	2.3378 (13)	C11—C12	1.390 (7)
Cu1—S1	2.2240 (13)	С12—Н12	0.9500
Cu1—S3	2.2806 (13)	C12—C13	1.392 (8)
Cu2—Cl1 ⁱ	2.3601 (13)	С13—Н13	0.9500
Cu2—Cl3 ⁱ	2.4871 (14)	C13—C14	1.393 (8)
Cu2—S2 ⁱⁱ	2.2880 (13)	C14—H14	0.9500
Cu2—S4	2.2362 (13)	C14—C15	1.382 (6)
Cu3—Cl1	2.2920 (14)	C16—H16A	0.9800
Cu3—Cl2	2.2266 (14)	C16—H16B	0.9800
Cu3—Cl3	2.3393 (13)	C16—H16C	0.9800
Cu3—Cl4	2.2901 (13)	C17—C18	1.490 (6)
S1—C1	1.689 (5)	C18—C19	1.397 (6)
S2—C9	1.676 (5)	C18—C23	1.391 (6)
S3—C17	1.671 (5)	С19—Н19	0.9500
S4—C25	1.676 (5)	C19—C20	1.391 (7)
N1—C1	1.333 (5)	С20—Н20	0.9500
N1—C15	1.441 (6)	C20—C21	1.387 (8)
N1—C16	1.475 (6)	C21—H21	0.9500
N2—C7	1.448 (6)	C21—C22	1.392 (7)
N2—C8	1.473 (6)	С22—Н22	0.9500
N2—C9	1.333 (6)	C22—C23	1.390 (6)
N3—C17	1.326 (6)	C24—H24A	0.9800
N3—C31	1.453 (6)	C24—H24B	0.9800
N3—C32	1.474 (6)	C24—H24C	0.9800
N4—C23	1.446 (6)	C25—C26	1.491 (6)
N4—C24	1.476 (6)	C26—C27	1.396 (6)
N4—C25	1.337 (6)	C26—C31	1.390 (6)

C1—C2	1.490 (6)	С27—Н27	0.9500
C2—C3	1.400 (6)	C27—C28	1.394 (6)
C2—C7	1.395 (6)	C28—H28	0.9500
С3—Н3	0.9500	C28—C29	1.390 (7)
C3—C4	1.392 (7)	С29—Н29	0.9500
C4—H4	0.9500	C29—C30	1.385 (7)
C4—C5	1.385 (7)	С30—Н30	0.9500
С5—Н5	0.9500	C30—C31	1.385 (6)
C5—C6	1.395 (7)	C32—H32A	0.9800
С6—Н6	0.9500	C32—H32B	0.9800
C6—C7	1.384 (6)	C32—H32C	0.9800
C8—H8A	0.9800	N5—C33	1.138 (8)
C8—H8B	0.9800	C33—C34	1.459 (8)
C8—H8C	0.9800	C34—H34A	0.9800
C9—C10	1.482 (6)	C34—H34B	0.9800
C10—C11	1.405 (6)	C34—H34C	0.9800
C10—C15	1.407 (6)		
Cl4—Cu1—Cl3	84.72 (4)	C13—C12—H12	119.9
S1—Cu1—Cl3	112.14 (5)	C12—C13—H13	120.0
S1—Cu1—Cl4	123.56 (5)	C12—C13—C14	120.0 (5)
S1—Cu1—S3	122.64 (5)	C14—C13—H13	120.0
S3—Cu1—Cl3	92.26 (5)	C13—C14—H14	119.9
S3—Cu1—Cl4	109.16 (5)	C15—C14—C13	120.1 (5)
Cl1 ⁱ —Cu2—Cl3 ⁱ	82.64 (4)	C15—C14—H14	119.9
S2 ⁱⁱ —Cu2—Cl1 ⁱ	111.66 (5)	C10-C15-N1	119.6 (4)
S2 ⁱⁱ —Cu2—Cl3 ⁱ	94.00 (5)	C14—C15—N1	119.6 (4)
S4—Cu2—Cl1 ⁱ	122.44 (5)	C14—C15—C10	120.7 (4)
S4—Cu2—Cl3 ⁱ	115.88 (5)	N1—C16—H16A	109.5
S4—Cu2—S2 ⁱⁱ	119.86 (5)	N1—C16—H16B	109.5
Cl1—Cu3—Cl3	87.47 (5)	N1—C16—H16C	109.5
Cl2—Cu3—Cl1	92.20 (6)	H16A—C16—H16B	109.5
Cl2—Cu3—Cl3	178.17 (6)	H16A—C16—H16C	109.5
Cl2—Cu3—Cl4	91.14 (6)	H16B—C16—H16C	109.5
Cl4—Cu3—Cl1	176.02 (5)	N3—C17—S3	121.7 (3)
Cl4—Cu3—Cl3	89.26 (4)	N3—C17—C18	118.5 (4)
Cu3—Cl1—Cu2 ⁱⁱⁱ	97.13 (5)	C18—C17—S3	119.7 (3)
Cu1—Cl3—Cu2 ⁱⁱⁱ	177.05 (6)	C19—C18—C17	119.6 (4)
Cu3—Cl3—Cu1	90.44 (4)	C23—C18—C17	121.2 (4)
Cu3—Cl3—Cu2 ⁱⁱⁱ	92.50 (4)	C23—C18—C19	119.0 (4)

Cu3—Cl4—Cu1	95.55 (5)	C18—C19—H19	120.1
C1—S1—Cu1	112.56 (15)	C20—C19—C18	119.8 (5)
C9—S2—Cu2 ^{iv}	110.99 (16)	С20—С19—Н19	120.1
C17—S3—Cu1	110.30 (16)	С19—С20—Н20	119.7
C25—S4—Cu2	113.15 (16)	C21—C20—C19	120.6 (5)
C1—N1—C15	122.7 (4)	С21—С20—Н20	119.7
C1—N1—C16	120.8 (4)	C20—C21—H21	120.0
C15—N1—C16	116.4 (4)	C20—C21—C22	120.0 (5)
C7—N2—C8	117.2 (4)	C22—C21—H21	120.0
C9—N2—C7	121.7 (4)	С21—С22—Н22	120.4
C9—N2—C8	121.1 (4)	C23—C22—C21	119.2 (5)
C17—N3—C31	121.0 (4)	С23—С22—Н22	120.4
C17—N3—C32	121.8 (4)	C18—C23—N4	119.9 (4)
C31—N3—C32	117.1 (4)	C22—C23—N4	118.7 (4)
C23—N4—C24	116.8 (4)	C22—C23—C18	121.3 (4)
C25—N4—C23	122.1 (4)	N4—C24—H24A	109.5
C25—N4—C24	120.8 (4)	N4—C24—H24B	109.5
N1—C1—S1	121.1 (3)	N4—C24—H24C	109.5
N1—C1—C2	117.5 (4)	H24A—C24—H24B	109.5
C2—C1—S1	121.4 (3)	H24A—C24—H24C	109.5
C3—C2—C1	120.6 (4)	H24B—C24—H24C	109.5
C7—C2—C1	120.6 (4)	N4—C25—S4	121.8 (3)
C7—C2—C3	118.7 (4)	N4—C25—C26	117.3 (4)
С2—С3—Н3	120.2	C26—C25—S4	120.9 (3)
C4—C3—C2	119.6 (4)	C27—C26—C25	120.0 (4)
С4—С3—Н3	120.2	C31—C26—C25	120.8 (4)
C3—C4—H4	119.3	C31—C26—C27	119.2 (4)
C5—C4—C3	121.3 (5)	С26—С27—Н27	120.2
C5—C4—H4	119.3	C28—C27—C26	119.6 (4)
C4—C5—H5	120.3	С28—С27—Н27	120.2
C4—C5—C6	119.3 (4)	C27—C28—H28	119.9
С6—С5—Н5	120.3	C29—C28—C27	120.3 (5)
С5—С6—Н6	120.2	C29—C28—H28	119.9
C7—C6—C5	119.6 (4)	С28—С29—Н29	119.8
С7—С6—Н6	120.2	C30—C29—C28	120.4 (5)
C2—C7—N2	119.0 (4)	С30—С29—Н29	119.8
C6—C7—N2	119.4 (4)	С29—С30—Н30	120.4
C6—C7—C2	121.5 (4)	C29—C30—C31	119.1 (4)
N2—C8—H8A	109.5	С31—С30—Н30	120.4
N2—C8—H8B	109.5	C26—C31—N3	119.9 (4)
		-	

N2—C8—H8C	109.5	C30—C31—N3	118.6 (4)
H8A—C8—H8B	109.5	C30—C31—C26	121.4 (4)
H8A—C8—H8C	109.5	N3—C32—H32A	109.5
H8B—C8—H8C	109.5	N3—C32—H32B	109.5
N2—C9—S2	122.3 (4)	N3—C32—H32C	109.5
N2	118.0 (4)	H32A—C32—H32B	109.5
C10—C9—S2	119.7 (3)	H32A—C32—H32C	109.5
С11—С10—С9	119.6 (4)	H32B—C32—H32C	109.5
C11—C10—C15	118.8 (4)	N5—C33—C34	178.5 (6)
C15—C10—C9	121.3 (4)	С33—С34—Н34А	109.5
C10-C11-H11	119.9	С33—С34—Н34В	109.5
C12—C11—C10	120.2 (5)	С33—С34—Н34С	109.5
C12—C11—H11	119.9	H34A—C34—H34B	109.5
C11—C12—H12	119.9	H34A—C34—H34C	109.5
C11—C12—C13	120.3 (5)	H34B—C34—H34C	109.5
Cu1—S1—C1—N1	169.0 (3)	C11—C10—C15—C14	1.2 (7)
Cu1—S1—C1—C2	-12.5 (4)	C11—C12—C13—C14	2.0 (8)
Cu1—S3—C17—N3	176.2 (3)	C12—C13—C14—C15	-0.4 (8)
Cu1—S3—C17—C18	-1.4 (4)	C13—C14—C15—N1	-177.2 (4)
Cu2 ^{iv} —S2—C9—N2	174.3 (3)	C13—C14—C15—C10	-1.2 (7)
Cu2 ^{iv} —S2—C9—C10	-4.9 (4)	C15—N1—C1—S1	178.4 (3)
Cu2—S4—C25—N4	166.0 (3)	C15—N1—C1—C2	-0.2 (6)
Cu2—S4—C25—C26	-13.6 (4)	C15—C10—C11—C12	0.4 (7)
S1—C1—C2—C3	-66.9 (5)	C16—N1—C1—S1	2.0 (6)
S1—C1—C2—C7	109.4 (4)	C16—N1—C1—C2	-176.6 (4)
S2-C9-C10-C11	-64.1 (5)	C16—N1—C15—C10	-115.3 (5)
S2—C9—C10—C15	109.9 (4)	C16—N1—C15—C14	60.7 (6)
S3—C17—C18—C19	-64.2 (5)	C17—N3—C31—C26	74.3 (5)
S3—C17—C18—C23	111.3 (4)	C17—N3—C31—C30	-107.6 (5)
S4—C25—C26—C27	-65.2 (5)	C17—C18—C19—C20	175.7 (4)
S4—C25—C26—C31	111.8 (4)	C17—C18—C23—N4	1.2 (6)
N1—C1—C2—C3	111.7 (5)	C17—C18—C23—C22	-174.8 (4)
N1—C1—C2—C7	-72.1 (5)	C18—C19—C20—C21	-0.8 (8)
N2-C9-C10-C11	116.6 (5)	C19—C18—C23—N4	176.8 (4)
N2—C9—C10—C15	-69.4 (6)	C19—C18—C23—C22	0.7 (7)
N3—C17—C18—C19	118.1 (5)	C19—C20—C21—C22	0.7 (8)
N3-C17-C18-C23	-66.4 (6)	C20—C21—C22—C23	0.1 (7)
N4-C25-C26-C27	115.2 (5)	C21—C22—C23—N4	-176.9 (4)
N4-C25-C26-C31	-67.9 (6)	C21—C22—C23—C18	-0.8 (7)

C1—N1—C15—C10	68.2 (6)	C23—N4—C25—S4	174.8 (3)
C1—N1—C15—C14	-115.8 (5)	C23—N4—C25—C26	-5.6 (6)
C1—C2—C3—C4	175.9 (4)	C23—C18—C19—C20	0.1 (7)
C1—C2—C7—N2	2.4 (6)	C24—N4—C23—C18	-113.4 (5)
C1—C2—C7—C6	-175.1 (4)	C24—N4—C23—C22	62.8 (6)
C2—C3—C4—C5	-0.6 (7)	C24—N4—C25—S4	1.5 (6)
C3—C2—C7—N2	178.7 (4)	C24—N4—C25—C26	-178.8 (4)
C3—C2—C7—C6	1.2 (6)	C25—N4—C23—C18	73.1 (6)
C3—C4—C5—C6	0.9 (7)	C25—N4—C23—C22	-110.7 (5)
C4—C5—C6—C7	-0.2 (7)	C25—C26—C27—C28	176.2 (4)
C5—C6—C7—N2	-178.4 (4)	C25—C26—C31—N3	1.6 (6)
C5—C6—C7—C2	-0.9 (7)	C25—C26—C31—C30	-176.5 (4)
C7—N2—C9—S2	176.2 (3)	C26—C27—C28—C29	0.2 (7)
C7—N2—C9—C10	-4.6 (6)	C27—C26—C31—N3	178.6 (4)
C7—C2—C3—C4	-0.4 (6)	C27—C26—C31—C30	0.5 (7)
C8—N2—C7—C2	-109.3 (5)	C27—C28—C29—C30	0.8 (7)
C8—N2—C7—C6	68.2 (6)	C28—C29—C30—C31	-1.2 (7)
C8—N2—C9—S2	-2.4 (6)	C29—C30—C31—N3	-177.6 (4)
C8—N2—C9—C10	176.9 (4)	C29—C30—C31—C26	0.5 (7)
C9—N2—C7—C2	72.0 (6)	C31—N3—C17—S3	175.2 (3)
C9—N2—C7—C6	-110.4 (5)	C31—N3—C17—C18	-7.2 (6)
C9—C10—C11—C12	174.5 (4)	C31—C26—C27—C28	-0.9 (6)
C9—C10—C15—N1	3.2 (6)	C32—N3—C17—S3	-0.9 (6)
C9—C10—C15—C14	-172.8 (4)	C32—N3—C17—C18	176.7 (4)
C10-C11-C12-C13	-2.1 (8)	C32—N3—C31—C26	-109.5 (5)
C11—C10—C15—N1	177.2 (4)	C32—N3—C31—C30	68.6 (5)

Symmetry codes: (i) -*x*, y+1/2, -*z*; (ii) *x*-1, *y*, *z*-1; (iii) -*x*, *y*-1/2, -*z*; (iv) *x*+1, *y*, *z*+1.

$\label{eq:crystal} \textit{Crystal data for} \, [Cu_2l_2(bdta)(MeCN)]_n \, (8)$

$C_{28}H_{22}Cu_2I_2N_2S_2$	F(000) = 3200
$M_r = 831.47$	$D_{\rm x} = 1.787 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>I</i> 2/ <i>a</i>	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
<i>a</i> = 19.2485 (11) Å	Cell parameters from 78720 reflections
b = 16.5225 (8) Å	$\theta = 2.1 - 29.7^{\circ}$
<i>c</i> = 21.3838 (11) Å	$\mu = 3.53 \text{ mm}^{-1}$
$\beta = 114.655 \ (4)^{\circ}$	T = 120 K
V = 6180.8 (6) Å ³	Prism, yellow
Z = 8	$0.45 \times 0.23 \times 0.19 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	8343 independent reflections
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus	7370 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.060$
rotation method, ω scans	$\theta_{max} = 29.3^{\circ}, \ \theta_{min} = 2.1^{\circ}$
Absorption correction: integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	$h = -26 \rightarrow 26$
$T_{\min} = 0.175, T_{\max} = 0.406$	<i>k</i> = -22→22
42187 measured reflections	<i>l</i> = −29→29

Refinement

Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.159$	H-atom parameters constrained
<i>S</i> = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.0937P)^2 + 44.3932P]$ where $P = (F_o^2 + 2F_c^2)/3$
8343 reflections	$(\Delta/\sigma)_{max} = 0.001$
326 parameters	Δ _{max} = 2.12 e Å ⁻³
0 restraints	$\Delta \rangle_{\rm min} = -3.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for $[Cu_2l_2(bdta)(MeCN)]_n$ (8)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.23863 (2)	0.48315 (2)	0.09837 (2)	0.02929 (10)
12	0.37161 (2)	0.29370 (2)	0.04851 (2)	0.02734 (10)
Cu1	0.31914 (3)	0.35616 (4)	0.13142 (3)	0.02824 (15)
Cu2	0.250000	0.30681 (6)	0.500000	0.02978 (19)
Cu3	0.250000	0.39612 (6)	0.000000	0.0309 (2)
S1	0.34478 (8)	0.28067 (8)	0.22490 (6)	0.0306 (3)
S2	0.20874 (7)	0.37554 (8)	0.39837 (6)	0.0284 (2)
N1	0.3860 (2)	0.3079 (2)	0.3573 (2)	0.0242 (7)
N2	0.2653 (2)	0.4467 (2)	0.3190 (2)	0.0245 (7)
C1	0.3693 (3)	0.3394 (3)	0.2954 (2)	0.0266 (9)
C2	0.3764 (3)	0.4281 (3)	0.2916 (2)	0.0253 (9)
C3	0.4322 (3)	0.4611 (3)	0.2728 (3)	0.0294 (9)
Н3	0.466417	0.426408	0.263873	0.035*
C4	0.4373 (3)	0.5442 (4)	0.2673 (3)	0.0342 (11)
H4	0.475851	0.566503	0.255564	0.041*
C5	0.3866 (3)	0.5948 (3)	0.2787 (3)	0.0344 (11)
Н5	0.390095	0.651683	0.274236	0.041*
C6	0.3302 (3)	0.5632 (3)	0.2967 (2)	0.0281 (9)
Н6	0.295000	0.598037	0.303874	0.034*
C7	0.3264 (3)	0.4795 (3)	0.3041 (2)	0.0271 (9)
C8	0.1878 (3)	0.4518 (3)	0.2632 (2)	0.0277 (9)
H8A	0.156251	0.407741	0.269216	0.033*
H8B	0.190980	0.442940	0.218688	0.033*
C9	0.1480 (3)	0.5325 (3)	0.2604 (3)	0.0290 (10)
C10	0.1034 (3)	0.5649 (5)	0.1965 (3)	0.0462 (15)
H10	0.098791	0.537651	0.155901	0.055*
C11	0.0650 (4)	0.6378 (5)	0.1919 (4)	0.057 (2)
H11	0.034398	0.660175	0.148057	0.069*
C12	0.0714 (4)	0.6775 (4)	0.2504 (4)	0.0468 (15)
H12	0.044265	0.726533	0.247009	0.056*
C13	0.1172 (4)	0.6461 (4)	0.3144 (4)	0.0433 (14)
H13	0.122472	0.674128	0.354903	0.052*
C14	0.1555 (3)	0.5732 (4)	0.3192 (3)	0.0356 (11)
H14	0.186950	0.551563	0.363174	0.043*
C15	0.2787 (3)	0.4116 (3)	0.3792 (2)	0.0252 (9)
C16	0.3596 (3)	0.4057 (3)	0.4308 (2)	0.0256 (9)

C17	0.3829 (3)	0.4469 (3)	0.4935 (3)	0.0310 (10)
H17	0.347733	0.480339	0.502206	0.037*
C18	0.4577 (3)	0.4387 (4)	0.5431 (3)	0.0363 (11)
H18	0.473560	0.466721	0.585593	0.044*
C19	0.5082 (3)	0.3904 (4)	0.5307 (3)	0.0365 (11)
H19	0.559094	0.385345	0.564757	0.044*
C20	0.4863 (3)	0.3484 (3)	0.4689 (3)	0.0312 (10)
H20	0.521727	0.314696	0.460727	0.037*
C21	0.4114 (3)	0.3567 (3)	0.4191 (2)	0.0249 (9)
C22	0.3791 (3)	0.2195 (3)	0.3683 (2)	0.0242 (8)
H22A	0.340620	0.195644	0.325347	0.029*
H22B	0.360566	0.212413	0.404673	0.029*
C23	0.4542 (3)	0.1740 (3)	0.3888 (2)	0.0252 (9)
C24	0.5058 (3)	0.1935 (4)	0.3615 (3)	0.0370 (12)
H24	0.494805	0.236206	0.329020	0.044*
C25	0.5742 (3)	0.1500 (4)	0.3817 (3)	0.0351 (11)
H25	0.609363	0.162697	0.362551	0.042*
C26	0.5904 (4)	0.0889 (4)	0.4295 (4)	0.0472 (15)
H26	0.636531	0.058973	0.442905	0.057*
C27	0.5402 (4)	0.0710 (5)	0.4579 (5)	0.066 (3)
H27	0.551930	0.029386	0.491360	0.079*
C28	0.4716 (3)	0.1141 (4)	0.4376 (4)	0.0469 (16)
H28	0.437033	0.101768	0.457477	0.056*

Atomic displacement parameters $(Å^2)$ for $[Cu_2l_2(bdta)(MeCN)]_n$ (8)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02693 (17)	0.0409 (2)	0.01975 (16)	0.00496 (12)	0.00948 (12)	-0.00064 (11)
12	0.02395 (16)	0.0388 (2)	0.02004 (16)	0.00099 (11)	0.00995 (12)	-0.00146 (11)
Cu1	0.0284 (3)	0.0382 (3)	0.0177 (3)	0.0008 (2)	0.0092 (2)	0.0011 (2)
Cu2	0.0309 (4)	0.0400 (5)	0.0206 (4)	0.000	0.0129 (3)	0.000
Cu3	0.0292 (4)	0.0453 (5)	0.0179 (4)	0.000	0.0096 (3)	0.000
S 1	0.0422 (7)	0.0330 (6)	0.0172 (5)	0.0033 (5)	0.0130 (5)	-0.0002 (4)
S2	0.0270 (5)	0.0399 (7)	0.0216 (5)	0.0008 (5)	0.0133 (4)	0.0037 (4)
N1	0.0227 (17)	0.030 (2)	0.0189 (17)	-0.0009 (14)	0.0081 (14)	-0.0004 (14)
N2	0.0294 (19)	0.0254 (19)	0.0215 (17)	0.0021 (15)	0.0134 (15)	0.0005 (14)
C1	0.025 (2)	0.035 (3)	0.023 (2)	0.0062 (18)	0.0136 (17)	0.0048 (18)
C2	0.024 (2)	0.033 (2)	0.0170 (18)	0.0009 (17)	0.0070 (16)	0.0023 (16)
C3	0.025 (2)	0.038 (3)	0.024 (2)	0.0010 (19)	0.0091 (17)	-0.0014 (19)
C4	0.030 (2)	0.045 (3)	0.029 (2)	-0.007 (2)	0.013 (2)	0.006 (2)
C5	0.037 (3)	0.034 (3)	0.032 (2)	-0.004 (2)	0.014 (2)	0.004 (2)

C6	0.032 (2)	0.030 (2)	0.023 (2)	0.0033 (18)	0.0117 (18)	0.0039 (17)
C7	0.029 (2)	0.033 (2)	0.019 (2)	-0.0024 (18)	0.0109 (17)	0.0001 (17)
C8	0.027 (2)	0.036 (3)	0.022 (2)	-0.0036 (18)	0.0109 (17)	-0.0030 (18)
C9	0.024 (2)	0.040 (3)	0.025 (2)	-0.0008 (18)	0.0116 (18)	0.0029 (19)
C10	0.033 (3)	0.070 (4)	0.034 (3)	0.018 (3)	0.013 (2)	0.007 (3)
C11	0.042 (3)	0.083 (5)	0.050 (4)	0.033 (3)	0.022 (3)	0.031 (4)
C12	0.037 (3)	0.042 (3)	0.070 (4)	0.012 (2)	0.030 (3)	0.019 (3)
C13	0.037 (3)	0.039 (3)	0.064 (4)	0.001 (2)	0.031 (3)	-0.005 (3)
C14	0.036 (3)	0.037 (3)	0.033 (3)	0.004 (2)	0.013 (2)	-0.001 (2)
C15	0.026 (2)	0.034 (2)	0.0177 (19)	0.0007 (17)	0.0121 (16)	-0.0027 (16)
C16	0.026 (2)	0.032 (2)	0.0192 (19)	-0.0015 (17)	0.0101 (17)	0.0011 (17)
C17	0.036 (3)	0.035 (3)	0.024 (2)	-0.004 (2)	0.014 (2)	-0.0014 (18)
C18	0.045 (3)	0.041 (3)	0.020 (2)	-0.005 (2)	0.010 (2)	-0.0028 (19)
C19	0.036 (3)	0.042 (3)	0.023 (2)	-0.005 (2)	0.004 (2)	0.000 (2)
C20	0.031 (2)	0.037 (3)	0.024 (2)	-0.002 (2)	0.0097 (19)	0.0004 (19)
C21	0.026 (2)	0.030 (2)	0.0149 (18)	-0.0005 (17)	0.0052 (16)	0.0003 (16)
C22	0.027 (2)	0.028 (2)	0.0197 (19)	0.0000 (17)	0.0118 (17)	0.0027 (16)
C23	0.025 (2)	0.032 (2)	0.0191 (19)	-0.0015 (17)	0.0104 (16)	-0.0048 (17)
C24	0.033 (3)	0.046 (3)	0.038 (3)	0.011 (2)	0.021 (2)	0.014 (2)
C25	0.030 (2)	0.048 (3)	0.034 (3)	0.011 (2)	0.021 (2)	0.009 (2)
C26	0.039 (3)	0.053 (4)	0.057 (4)	0.021 (3)	0.028 (3)	0.021 (3)
C27	0.047 (4)	0.076 (5)	0.091 (6)	0.029 (4)	0.044 (4)	0.056 (5)
C28	0.033 (3)	0.056 (4)	0.062 (4)	0.011 (3)	0.030 (3)	0.028 (3)

Geometric parameters (Å, °) for $[Cu_2l_2(bdta)(MeCN)]_n$ (8)

I1—Cu1	2.5278 (7)	C6—C7	1.397 (7)
I1—Cu3	2.6315 (6)	C8—C9	1.526 (7)
I2—Cu1	2.5926 (7)	C9—C10	1.383 (8)
I2—Cu2 ⁱ	2.6997 (7)	C9—C14	1.381 (7)
I2—Cu3	2.7190 (7)	C10—C11	1.394 (10)
Cu1—Cu3	2.6427 (6)	C11—C12	1.372 (11)
Cu1—S1	2.2298 (13)	C12—C13	1.382 (10)
Cu2—S2 ⁱⁱ	2.2811 (13)	C13—C14	1.393 (8)
Cu2—S2	2.2810 (13)	C15—C16	1.489 (6)
S1—C1	1.686 (5)	C16—C17	1.399 (7)
S2—C15	1.671 (5)	C16—C21	1.387 (7)
N1—C1	1.330 (6)	C17—C18	1.394 (8)
N1—C21	1.449 (6)	C18—C19	1.368 (9)
N1—C22	1.494 (6)	C19—C20	1.393 (7)
N2—C7	1.445 (6)	C20—C21	1.397 (7)

N2—C8	1.473 (6)	C22—C23	1.522 (7)
N2—C15	1.337 (6)	C23—C24	1.384 (7)
C1—C2	1.477 (7)	C23—C28	1.374 (7)
C2—C3	1.405 (7)	C24—C25	1.400 (7)
C2—C7	1.390 (7)	C25—C26	1.377 (8)
C3—C4	1.385 (8)	C26—C27	1.370 (9)
C4—C5	1.383 (8)	C27—C28	1.399 (8)
C5—C6	1.395 (7)		
Cu1—I1—Cu3	61.58 (2)	C3—C2—C1	120.0 (4)
Cu1—I2—Cu2 ⁱ	89.134 (19)	C7—C2—C1	120.5 (4)
Cu1—I2—Cu3	59.617 (15)	С7—С2—С3	119.5 (5)
Cu2 ⁱ —I2—Cu3	76.45 (3)	C4—C3—C2	119.9 (5)
I1—Cu1—I2	120.50 (2)	C5—C4—C3	120.2 (5)
I1—Cu1—Cu3	61.14 (2)	C4—C5—C6	120.7 (5)
I2—Cu1—Cu3	62.570 (19)	C5—C6—C7	119.1 (5)
S1—Cu1—I1	126.55 (4)	C2—C7—N2	120.3 (4)
S1—Cu1—I2	112.75 (4)	C2—C7—C6	120.6 (5)
S1—Cu1—Cu3	156.64 (5)	C6—C7—N2	118.9 (4)
I2 ⁱ —Cu2—I2 ⁱⁱⁱ	104.07 (4)	N2—C8—C9	113.8 (4)
S2—Cu2—I2 ⁱⁱⁱ	125.01 (3)	С10—С9—С8	118.2 (5)
S2 ⁱⁱ —Cu2—I2 ⁱⁱⁱ	92.22 (3)	C14—C9—C8	122.0 (5)
S2 ⁱⁱ —Cu2—I2 ⁱ	125.01 (3)	C14—C9—C10	119.8 (5)
S2—Cu2—I2 ⁱ	92.22 (3)	C9—C10—C11	119.8 (6)
S2—Cu2—S2 ⁱⁱ	120.29 (8)	C12—C11—C10	120.3 (6)
I1—Cu3—I1 ^{iv}	113.76 (4)	C11—C12—C13	120.0 (6)
I1—Cu3—I2	112.368 (10)	C12—C13—C14	119.9 (6)
I1 ^{iv} —Cu3—I2 ^{iv}	112.367 (10)	C9—C14—C13	120.2 (6)
I1 ^{iv} —Cu3—I2	107.431 (11)	N2—C15—S2	122.7 (4)
I1—Cu3—I2 ^{iv}	107.430 (10)	N2—C15—C16	117.6 (4)
I1—Cu3—Cu1	57.276 (16)	C16—C15—S2	119.7 (3)
I1 ^{iv} —Cu3—Cu1	144.45 (3)	C17—C16—C15	119.7 (4)
I1—Cu3—Cu1 ^{iv}	144.45 (3)	C21—C16—C15	120.9 (4)
I1 ^{iv} —Cu3—Cu1 ^{iv}	57.272 (16)	C21—C16—C17	119.3 (4)
I2—Cu3—I2 ^{iv}	103.03 (4)	C18—C17—C16	119.9 (5)
Cu1—Cu3—I2	57.814 (19)	C19—C18—C17	120.1 (5)
Cu1 ^{iv} —Cu3—I2	102.81 (3)	C18—C19—C20	121.2 (5)
Cu1—Cu3—I2 ^{iv}	102.81 (3)	C19—C20—C21	118.7 (5)
Cu1 ^{iv} —Cu3—I2 ^{iv}	57.817 (19)	C16—C21—N1	119.7 (4)
Cu1—Cu3—Cu1 ^{iv}	151.06 (5)	C16—C21—C20	120.8 (4)

C1—S1—Cu1	110.76 (18)	C20-C21-N1	119.2 (4)
C15—S2—Cu2	114.49 (17)	N1—C22—C23	113.1 (4)
C1—N1—C21	122.6 (4)	C24—C23—C22	121.7 (4)
C1—N1—C22	122.6 (4)	C28—C23—C22	118.5 (4)
C21—N1—C22	114.8 (4)	C28—C23—C24	119.8 (5)
C7—N2—C8	116.2 (4)	C23—C24—C25	119.9 (5)
C15—N2—C7	121.9 (4)	C26—C25—C24	119.9 (5)
C15—N2—C8	121.8 (4)	C27—C26—C25	120.2 (5)
N1—C1—S1	121.7 (4)	C26—C27—C28	120.1 (6)
N1—C1—C2	117.0 (4)	C23—C28—C27	120.1 (5)
C2—C1—S1	121.3 (3)		
Cu1—S1—C1—N1	179.0 (3)	C8-C9-C10-C11	178.9 (6)
Cu1—S1—C1—C2	-3.7 (4)	C8—C9—C14—C13	-178.9 (5)
Cu2—S2—C15—N2	173.6 (3)	C9-C10-C11-C12	-0.1 (11)
Cu2—S2—C15—C16	-7.0 (4)	C10-C9-C14-C13	1.2 (9)
S1—C1—C2—C3	-63.6 (6)	C10-C11-C12-C13	1.4 (11)
S1—C1—C2—C7	114.1 (4)	C11—C12—C13—C14	-1.4 (10)
S2-C15-C16-C17	-63.4 (6)	C12—C13—C14—C9	0.1 (9)
S2-C15-C16-C21	113.4 (5)	C14—C9—C10—C11	-1.2 (9)
N1—C1—C2—C3	113.9 (5)	C15—N2—C7—C2	72.8 (6)
N1—C1—C2—C7	-68.4 (6)	C15—N2—C7—C6	-112.5 (5)
N1—C22—C23—C24	-36.9 (6)	C15—N2—C8—C9	97.0 (5)
N1—C22—C23—C28	140.9 (5)	C15—C16—C17—C18	177.2 (5)
N2-C8-C9-C10	141.7 (5)	C15-C16-C21-N1	-2.7 (7)
N2-C8-C9-C14	-38.2 (7)	C15—C16—C21—C20	-177.0 (5)
N2-C15-C16-C17	116.1 (5)	C16—C17—C18—C19	-0.2 (8)
N2-C15-C16-C21	-67.1 (6)	C17—C16—C21—N1	174.1 (4)
C1—N1—C21—C16	73.3 (6)	C17—C16—C21—C20	-0.2 (7)
C1—N1—C21—C20	-112.2 (5)	C17—C18—C19—C20	-0.2 (9)
C1—N1—C22—C23	95.6 (5)	C18—C19—C20—C21	0.3 (8)
C1—C2—C3—C4	178.1 (4)	C19—C20—C21—N1	-174.5 (5)
C1—C2—C7—N2	-1.8 (7)	C19—C20—C21—C16	-0.1 (8)
C1—C2—C7—C6	-176.4 (4)	C21—N1—C1—S1	176.4 (3)
C2—C3—C4—C5	-1.4 (8)	C21—N1—C1—C2	-1.0 (7)
C3—C2—C7—N2	175.9 (4)	C21—N1—C22—C23	-85.1 (5)
C3—C2—C7—C6	1.3 (7)	C21—C16—C17—C18	0.4 (8)
C3—C4—C5—C6	0.8 (8)	C22—N1—C1—S1	-4.4 (6)
C4—C5—C6—C7	0.9 (8)	C22—N1—C1—C2	178.1 (4)
C5—C6—C7—N2	-176.6 (4)	C22—N1—C21—C16	-105.9 (5)

C5—C6—C7—C2	-1.9 (7)	C22—N1—C21—C20	68.5 (6)
C7—N2—C8—C9	-84.8 (5)	C22—C23—C24—C25	-179.9 (5)
C7—N2—C15—S2	178.3 (4)	C22—C23—C28—C27	-179.9 (7)
C7—N2—C15—C16	-1.2 (7)	C23—C24—C25—C26	-0.9 (10)
C7—C2—C3—C4	0.4 (7)	C24—C23—C28—C27	-2.0 (11)
C8—N2—C7—C2	-105.4 (5)	C24—C25—C26—C27	-0.7 (12)
C8—N2—C7—C6	69.3 (6)	C25—C26—C27—C28	1.0 (14)
C8—N2—C15—S2	-3.7 (7)	C26—C27—C28—C23	0.4 (14)
C8—N2—C15—C16	176.9 (4)	C28—C23—C24—C25	2.3 (9)

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1/2; (ii) -x+1/2, y, -z+1; (iii) x, -y+1/2, z+1/2; (iv) -x+1/2, y, -z.

Crystal data for $[Cu_2Br_2(bdta)]_n$ (9)

$C_{28}H_{22}Br_2Cu_2N_2S_2$	<i>Z</i> = 2
$M_r = 737.49$	F(000) = 728
Triclinic, P^{-1}	$D_{\rm x} = 1.857 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.6426 (12) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
<i>b</i> = 11.6334 (14) Å	Cell parameters from 2871 reflections
<i>c</i> = 12.1551 (15) Å	$\theta = 1.9 - 25.0^{\circ}$
$\alpha = 108.021 \ (9)^{\circ}$	$\mu = 4.82 \text{ mm}^{-1}$
$\beta = 107.195 \ (9)^{\circ}$	T = 120 K
$\gamma = 98.463 \ (9)^{\circ}$	Block, yellow
V = 1319.1(3) Å ³	$0.16 \times 0.09 \times 0.08 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	5508 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.035$
rotation method, ω scans	$\theta_{max}=29.2^\circ,\theta_{min}=2.1^\circ$
Absorption correction: multi-scan STOE LANA, absorption correction by scaling of reflection intensities. J. Koziskova, F. Hahn, J. Richter, J. Kozisek, "Comparison of different absorption corrections on the model structure of tetrakis(µ2-acetato)- diaqua-di-copper(II)", Acta Chimica Slovaca, vol. 9, no. 2, 2016, pp. 136 - 140. Afterwards a spherical absorption correction was performed within STOE LANA.	$h = -14 \rightarrow 12$
$T_{\min} = 0.293, T_{\max} = 0.701$	$k = -15 \rightarrow 15$
12200 measured reflections	$l = -16 \rightarrow 16$
6508 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.082$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.0582P]$ where $P = (F_o^2 + 2F_c^2)/3$
6508 reflections	$(\Delta/\sigma)_{max} = 0.001$
325 parameters	Δ _{max} = 0.85 e Å ⁻³
0 restraints	$\Delta \rangle_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for $[Cu_2Br_2(bdta)]_n$ (9)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.02722 (2)	0.80834 (2)	0.22317 (2)	0.01905 (7)
Br2	-0.01606 (2)	0.84772 (2)	0.53443 (2)	0.01487 (6)
Cu1	0.90430 (3)	0.91384 (3)	0.35321 (3)	0.02033 (8)
Cu2	0.15002 (3)	0.83259 (3)	0.43058 (3)	0.01833 (8)
S1	0.68786 (6)	0.90537 (6)	0.25357 (6)	0.01514 (12)
S2	0.36633 (6)	0.85125 (6)	0.53116 (6)	0.01900 (13)
N1	0.4416 (2)	0.77253 (18)	0.21006 (18)	0.0127 (4)
N2	0.55958 (19)	0.75762 (18)	0.47110 (18)	0.0119 (4)
C1	0.5761 (2)	0.7847 (2)	0.2481 (2)	0.0121 (4)
C2	0.6247 (2)	0.6856 (2)	0.2886 (2)	0.0124 (4)
C3	0.6883 (3)	0.6088 (2)	0.2221 (2)	0.0174 (5)
Н3	0.696994	0.617804	0.149466	0.021*
C4	0.7386 (3)	0.5196 (2)	0.2623 (3)	0.0204 (5)
H4	0.780291	0.466712	0.216238	0.024*
C5	0.7285 (3)	0.5072 (2)	0.3688 (2)	0.0189 (5)
Н5	0.763413	0.445992	0.395700	0.023*
C6	0.6673 (2)	0.5841 (2)	0.4373 (2)	0.0155 (4)

H6	0.662476	0.577187	0.511896	0.019*
C7	0.6136 (2)	0.6711 (2)	0.3948 (2)	0.0128 (4)
C8	0.6611 (2)	0.8533 (2)	0.5886 (2)	0.0142 (4)
H8A	0.631398	0.931659	0.605208	0.017*
H8B	0.749312	0.871109	0.577320	0.017*
С9	0.6835 (2)	0.8175 (2)	0.7015 (2)	0.0149 (5)
C10	0.7941 (3)	0.8915 (2)	0.8083 (3)	0.0232 (5)
H10	0.855226	0.959181	0.807397	0.028*
C11	0.8165 (3)	0.8677 (3)	0.9169 (2)	0.0271 (6)
H11	0.892146	0.919428	0.989954	0.033*
C12	0.7279 (3)	0.7682 (3)	0.9184 (3)	0.0255 (6)
H12	0.742071	0.752357	0.992655	0.031*
C13	0.6198 (3)	0.6928 (3)	0.8119 (3)	0.0223 (5)
H13	0.560767	0.623386	0.812320	0.027*
C14	0.5960 (3)	0.7173 (2)	0.7035 (2)	0.0180 (5)
H14	0.519966	0.665528	0.630844	0.022*
C15	0.4271 (2)	0.7549 (2)	0.4369 (2)	0.0132 (4)
C16	0.3340 (2)	0.6608 (2)	0.3136 (2)	0.0137 (4)
C17	0.2286 (2)	0.5672 (2)	0.3058 (3)	0.0184 (5)
H17	0.218134	0.562743	0.379411	0.022*
C18	0.1399 (3)	0.4813 (3)	0.1913 (3)	0.0235 (5)
H18	0.068247	0.418472	0.186622	0.028*
C19	0.1550 (3)	0.4863 (2)	0.0830 (3)	0.0225 (5)
H19	0.095184	0.425838	0.004670	0.027*
C20	0.2573 (3)	0.5797 (2)	0.0894 (2)	0.0174 (5)
H20	0.266716	0.584400	0.015416	0.021*
C21	0.3464 (2)	0.6667 (2)	0.2047 (2)	0.0132 (4)
C22	0.3781 (2)	0.8685 (2)	0.1752 (2)	0.0139 (4)
H22A	0.446543	0.950762	0.217642	0.017*
H22B	0.301845	0.875182	0.205609	0.017*
C23	0.3250 (2)	0.8402 (2)	0.0374 (2)	0.0138 (4)
C24	0.1844 (2)	0.8126 (2)	-0.0274 (2)	0.0179 (5)
H24	0.122607	0.805878	0.014343	0.021*
C25	0.1350 (3)	0.7952 (2)	-0.1528 (2)	0.0203 (5)
H25	0.039828	0.778065	-0.195995	0.024*
C26	0.2250 (3)	0.8028 (2)	-0.2146 (2)	0.0203 (5)
H26	0.191467	0.789774	-0.300376	0.024*
C27	0.3642 (3)	0.8297 (3)	-0.1505 (2)	0.0226 (5)
H27	0.425756	0.835445	-0.192655	0.027*
C28	0.4140 (3)	0.8481 (2)	-0.0262 (2)	0.0188 (5)

H28	0.509378	0.866190	0.016505	0.023*

Atomic displacement parameters $(Å^2)$ for $[Cu_2Br_2(bdta)]_n$ (9)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01683 (12)	0.02696 (14)	0.01526 (12)	0.00888 (10)	0.00786 (10)	0.00700 (10)
Br2	0.01158 (11)	0.02015 (12)	0.01560 (11)	0.00562 (9)	0.00608 (9)	0.00850 (9)
Cu1	0.01399 (15)	0.02772 (17)	0.02147 (16)	0.00782 (13)	0.00633 (13)	0.01105 (14)
Cu2	0.01362 (15)	0.02322 (16)	0.01958 (16)	0.00784 (13)	0.00674 (13)	0.00782 (13)
S1	0.0121 (2)	0.0168 (3)	0.0192 (3)	0.0048 (2)	0.0060 (2)	0.0094 (2)
S2	0.0145 (3)	0.0287 (3)	0.0133 (3)	0.0107 (3)	0.0064 (2)	0.0036 (2)
N1	0.0129 (9)	0.0145 (9)	0.0133 (9)	0.0057 (8)	0.0061 (8)	0.0064 (8)
N2	0.0110 (8)	0.0151 (9)	0.0118 (9)	0.0053 (8)	0.0062 (8)	0.0051 (8)
C1	0.0134 (10)	0.0158 (10)	0.0086 (10)	0.0059 (9)	0.0053 (9)	0.0044 (8)
C2	0.0107 (9)	0.0115 (10)	0.0140 (10)	0.0027 (9)	0.0042 (9)	0.0038 (9)
C3	0.0204 (11)	0.0197 (12)	0.0173 (11)	0.0094 (10)	0.0110 (10)	0.0082 (10)
C4	0.0235 (12)	0.0197 (12)	0.0235 (13)	0.0128 (10)	0.0131 (11)	0.0077 (10)
C5	0.0207 (12)	0.0173 (11)	0.0221 (12)	0.0100 (10)	0.0087 (11)	0.0084 (10)
C6	0.0175 (11)	0.0160 (11)	0.0174 (11)	0.0061 (10)	0.0091 (10)	0.0086 (9)
C7	0.0103 (10)	0.0148 (10)	0.0153 (11)	0.0060 (9)	0.0067 (9)	0.0050 (9)
C8	0.0133 (10)	0.0166 (11)	0.0130 (10)	0.0036 (9)	0.0065 (9)	0.0046 (9)
C9	0.0156 (11)	0.0174 (11)	0.0145 (11)	0.0096 (10)	0.0068 (10)	0.0059 (9)
C10	0.0241 (13)	0.0173 (12)	0.0220 (13)	0.0045 (11)	0.0011 (11)	0.0065 (10)
C11	0.0327 (15)	0.0240 (13)	0.0140 (12)	0.0089 (13)	-0.0037 (12)	0.0039 (10)
C12	0.0341 (15)	0.0324 (14)	0.0158 (12)	0.0195 (13)	0.0093 (11)	0.0114 (11)
C13	0.0228 (12)	0.0275 (13)	0.0245 (13)	0.0102 (11)	0.0121 (11)	0.0150 (11)
C14	0.0162 (11)	0.0247 (12)	0.0164 (11)	0.0060 (10)	0.0088 (10)	0.0089 (10)
C15	0.0126 (10)	0.0173 (11)	0.0137 (10)	0.0061 (9)	0.0070 (9)	0.0079 (9)
C16	0.0113 (10)	0.0161 (11)	0.0152 (11)	0.0053 (9)	0.0054 (9)	0.0063 (9)
C17	0.0163 (11)	0.0193 (12)	0.0250 (13)	0.0055 (10)	0.0103 (11)	0.0124 (10)
C18	0.0151 (11)	0.0178 (12)	0.0344 (15)	0.0015 (10)	0.0062 (12)	0.0092 (11)
C19	0.0155 (11)	0.0168 (12)	0.0235 (13)	0.0036 (10)	-0.0032 (11)	0.0021 (10)
C20	0.0191 (12)	0.0158 (11)	0.0144 (11)	0.0075 (10)	0.0028 (10)	0.0034 (9)
C21	0.0108 (10)	0.0131 (10)	0.0166 (11)	0.0048 (9)	0.0054 (9)	0.0057 (9)
C22	0.0133 (10)	0.0164 (11)	0.0142 (11)	0.0079 (9)	0.0056 (9)	0.0063 (9)
C23	0.0163 (11)	0.0137 (10)	0.0126 (10)	0.0064 (9)	0.0052 (9)	0.0056 (9)
C24	0.0138 (11)	0.0218 (12)	0.0195 (12)	0.0050 (10)	0.0055 (10)	0.0098 (10)
C25	0.0174 (11)	0.0215 (12)	0.0177 (12)	0.0032 (11)	0.0007 (10)	0.0081 (10)
C26	0.0299 (13)	0.0188 (11)	0.0138 (11)	0.0106 (11)	0.0058 (11)	0.0084 (10)
C27	0.0283 (13)	0.0319 (14)	0.0190 (12)	0.0166 (12)	0.0149 (11)	0.0145 (11)
C28	0.0174 (11)	0.0270 (13)	0.0185 (12)	0.0109 (11)	0.0096 (10)	0.0118 (11)

Br1—Cu1 ⁱ	2.4922 (5)	C6—C7	1.392 (3)
Br1—Cu2	2.3763 (5)	С8—С9	1.517 (3)
Br2—Cu1 ⁱ	2.5097 (5)	C9—C10	1.385 (4)
Br2—Cu1 ⁱⁱ	2.5881 (6)	C9—C14	1.393 (4)
Br2—Cu2	2.4540 (5)	C10—C11	1.392 (4)
Cu1—Cu2 ⁱⁱⁱ	2.9053 (5)	C11—C12	1.389 (4)
Cu1—S1	2.2343 (7)	C12—C13	1.374 (4)
Cu2—S2	2.2059 (7)	C13—C14	1.392 (4)
S1—C1	1.672 (2)	C15—C16	1.488 (3)
S2—C15	1.686 (2)	C16—C17	1.403 (3)
N1—C1	1.338 (3)	C16—C21	1.390 (3)
N1—C21	1.446 (3)	C17—C18	1.383 (4)
N1—C22	1.492 (3)	C18—C19	1.390 (4)
N2—C7	1.453 (3)	C19—C20	1.387 (4)
N2—C8	1.482 (3)	C20—C21	1.393 (3)
N2—C15	1.340 (3)	C22—C23	1.509 (3)
C1—C2	1.488 (3)	C23—C24	1.403 (3)
C2—C3	1.402 (3)	C23—C28	1.398 (3)
C2—C7	1.388 (3)	C24—C25	1.395 (3)
C3—C4	1.388 (3)	C25—C26	1.390 (4)
C4—C5	1.378 (4)	C26—C27	1.390 (4)
C5—C6	1.396 (3)	C27—C28	1.379 (4)
Cu2—Br1—Cu1 ⁱ	73.231 (16)	C4—C5—C6	120.4 (2)
Cu1 ⁱ —Br2—Cu1 ⁱⁱ	81.050 (17)	C7—C6—C5	119.0 (2)
Cu2—Br2—Cu1 ⁱⁱ	89.212 (16)	C2—C7—N2	119.6 (2)
Cu2—Br2—Cu1 ⁱ	71.639 (14)	C2—C7—C6	121.1 (2)
Br1 ⁱⁱⁱ —Cu1—Br2 ⁱⁱ	112.069 (17)	C6—C7—N2	118.9 (2)
Br1 ⁱⁱⁱ —Cu1—Br2 ⁱⁱⁱ	100.346 (16)	N2—C8—C9	115.1 (2)
Br1 ⁱⁱⁱ —Cu1—Cu2 ⁱⁱⁱ	51.550 (13)	С10—С9—С8	117.8 (2)
Br2 ⁱⁱⁱ —Cu1—Br2 ⁱⁱ	98.951 (18)	С10—С9—С14	119.1 (2)
Br2 ⁱⁱⁱ —Cu1—Cu2 ⁱⁱⁱ	53.289 (12)	С14—С9—С8	123.1 (2)
Br2 ⁱⁱ —Cu1—Cu2 ⁱⁱⁱ	97.053 (18)	C9—C10—C11	120.7 (3)
S1—Cu1—Br1 ⁱⁱⁱ	116.58 (2)	C12—C11—C10	119.8 (3)
S1—Cu1—Br2 ⁱⁱⁱ	124.93 (2)	C13—C12—C11	119.7 (3)
S1—Cu1—Br2 ⁱⁱ	102.72 (2)	C12—C13—C14	120.6 (3)
S1—Cu1—Cu2 ⁱⁱⁱ	160.03 (2)	C13—C14—C9	120.1 (2)
Br1—Cu2—Br2	105.350 (16)	N2—C15—S2	121.60 (18)

Geometric parameters (Å, °) for $[Cu_2Br_2(bdta)]_n$ (9)

Br1—Cu2—Cu1 ⁱ	55.219 (13)	N2-C15-C16	117.5 (2)
Br2—Cu2—Cu1 ⁱ	55.072 (13)	C16—C15—S2	120.90 (17)
S2—Cu2—Br1	132.64 (2)	C17—C16—C15	120.1 (2)
S2—Cu2—Br2	121.92 (2)	C21—C16—C15	121.0 (2)
S2—Cu2—Cu1 ⁱ	157.26 (2)	C21—C16—C17	118.9 (2)
C1—S1—Cu1	113.11 (8)	C18—C17—C16	120.3 (2)
C15—S2—Cu2	109.64 (8)	C17—C18—C19	120.3 (3)
C1—N1—C21	122.12 (19)	C20—C19—C18	120.0 (2)
C1—N1—C22	123.3 (2)	C19—C20—C21	119.7 (2)
C21—N1—C22	114.54 (18)	C16—C21—N1	119.7 (2)
C7—N2—C8	115.91 (18)	C16—C21—C20	120.8 (2)
C15—N2—C7	122.8 (2)	C20—C21—N1	119.2 (2)
C15—N2—C8	121.26 (19)	N1—C22—C23	113.95 (19)
N1—C1—S1	122.93 (18)	C24—C23—C22	119.8 (2)
N1—C1—C2	116.9 (2)	C28—C23—C22	121.1 (2)
C2—C1—S1	120.14 (16)	C28—C23—C24	118.9 (2)
C3—C2—C1	119.8 (2)	C25—C24—C23	120.2 (2)
C7—C2—C1	121.1 (2)	C26—C25—C24	120.0 (2)
C7—C2—C3	119.0 (2)	C27—C26—C25	119.7 (2)
C4—C3—C2	120.1 (2)	C28—C27—C26	120.6 (2)
C5—C4—C3	120.4 (2)	C27—C28—C23	120.5 (2)
Cu1—S1—C1—N1	169.52 (16)	C8—C9—C10—C11	176.7 (2)
Cu1—S1—C1—C2	-9.4 (2)	C8—C9—C14—C13	-177.4 (2)
Cu2—S2—C15—N2	172.97 (17)	C9—C10—C11—C12	0.5 (4)
Cu2—S2—C15—C16	-8.9 (2)	C10—C9—C14—C13	0.2 (4)
S1—C1—C2—C3	-65.1 (3)	C10-C11-C12-C13	0.9 (4)
S1—C1—C2—C7	112.0 (2)	C11—C12—C13—C14	-1.8 (4)
S2-C15-C16-C17	-60.5 (3)	C12—C13—C14—C9	1.2 (4)
S2-C15-C16-C21	117.0 (2)	C14—C9—C10—C11	-1.1 (4)
N1—C1—C2—C3	115.9 (2)	C15—N2—C7—C2	73.6 (3)
N1—C1—C2—C7	-67.0 (3)	C15—N2—C7—C6	-113.6 (3)
N1-C22-C23-C24	113.6 (2)	C15—N2—C8—C9	88.9 (3)
N1-C22-C23-C28	-70.2 (3)	C15—C16—C17—C18	178.5 (2)
N2-C8-C9-C10	168.1 (2)	C15—C16—C21—N1	-6.3 (3)
N2-C8-C9-C14	-14.2 (3)	C15—C16—C21—C20	-178.8 (2)
N2-C15-C16-C17	117.8 (2)	C16—C17—C18—C19	0.5 (4)
N2-C15-C16-C21	-64.7 (3)	C17—C16—C21—N1	171.3 (2)
C1—N1—C21—C16	76.0 (3)	C17—C16—C21—C20	-1.2 (3)
C1—N1—C21—C20	-111.4 (3)	C17—C18—C19—C20	-1.6 (4)

C1—N1—C22—C23	97.2 (3)	C18—C19—C20—C21	1.3 (4)
C1—C2—C3—C4	177.5 (2)	C19—C20—C21—N1	-172.4 (2)
C1—C2—C7—N2	-2.9 (3)	C19—C20—C21—C16	0.1 (3)
C1—C2—C7—C6	-175.6 (2)	C21—N1—C1—S1	179.31 (17)
C2—C3—C4—C5	-1.1 (4)	C21—N1—C1—C2	-1.7 (3)
C3—C2—C7—N2	174.2 (2)	C21—N1—C22—C23	-85.4 (2)
C3—C2—C7—C6	1.6 (3)	C21—C16—C17—C18	0.9 (3)
C3—C4—C5—C6	0.1 (4)	C22—N1—C1—S1	-3.4 (3)
C4—C5—C6—C7	1.7 (4)	C22—N1—C1—C2	175.5 (2)
C5—C6—C7—N2	-175.2 (2)	C22—N1—C21—C16	-101.5 (2)
C5—C6—C7—C2	-2.5 (4)	C22—N1—C21—C20	71.1 (3)
C7—N2—C8—C9	-93.1 (2)	C22—C23—C24—C25	175.4 (2)
C7—N2—C15—S2	176.47 (17)	C22—C23—C28—C27	-175.9 (2)
C7—N2—C15—C16	-1.7 (3)	C23—C24—C25—C26	1.1 (4)
C7—C2—C3—C4	0.2 (4)	C24—C23—C28—C27	0.3 (4)
C8—N2—C7—C2	-104.3 (2)	C24—C25—C26—C27	-0.9 (4)
C8—N2—C7—C6	68.5 (3)	C25—C26—C27—C28	0.4 (4)
C8—N2—C15—S2	-5.7 (3)	C26—C27—C28—C23	-0.1 (4)
C8—N2—C15—C16	176.1 (2)	C28—C23—C24—C25	-0.8 (4)

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z.

Crystal data for $[Ag_2I_2(mdta)]_n$ (10)

$C_{16}H_{14}Ag_2I_2N_2S_2$	F(000) = 1424
$M_r = 767.95$	$D_{\rm x} = 2.517 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 13.3327 (8) Å	Cell parameters from 33275 reflections
b = 11.2308 (4) Å	$\theta = 2.1 - 29.7^{\circ}$
c = 13.8158 (8) Å	$\mu = 5.19 \text{ mm}^{-1}$
$\beta = 101.542 \ (5)^{\circ}$	T = 120 K
$V = 2026.90 (19) Å^3$	Prism, yellow
Z = 4	$0.22 \times 0.17 \times 0.05 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	5461 independent reflections
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus	4861 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.020$

rotation method, ω scans	$\theta_{max} = 29.2^{\circ}, \theta_{min} = 1.9^{\circ}$
Absorption correction: integration STOE <i>X-RED32</i> , absorption correction by Gaussian integration, analogous to P. Coppens, "The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis", published in F. R. Ahmed (Editor), "Crystallographic Computing", Munksgaard, Copenhagen (1970), 255 - 270	$h = -18 \rightarrow 18$
$T_{\min} = 0.288, T_{\max} = 0.832$	$k = -15 \rightarrow 15$
24114 measured reflections	<i>l</i> = -18→18

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.019$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.048$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2 + 1.616P]$ where $P = (F_o^2 + 2F_c^2)/3$
5461 reflections	$(\Delta/\sigma)_{max} = 0.002$
219 parameters	Δ _{max} = 1.15 e Å ⁻³
0 restraints	$\Delta \rangle_{\rm min} = -1.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters

(\AA^2) for $[Ag_2I_2(mdta)]_n$ (10)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.14221 (2)	0.01282 (2)	0.63152 (2)	0.01744 (4)
I2	0.15767 (2)	0.16980 (2)	0.33006 (2)	0.02748 (5)
Ag1	0.13918 (2)	0.22029 (2)	0.51858 (2)	0.02119 (5)
Ag2	0.08234 (2)	0.96916 (2)	0.42186 (2)	0.02321 (5)
S1	0.10400 (4)	0.40860 (5)	0.59887 (4)	0.01656 (11)
S2	0.09382 (4)	0.76872 (5)	0.33722 (4)	0.01585 (10)
N1	0.19058 (14)	0.61990 (15)	0.60269 (13)	0.0128 (3)
N2	0.20204 (14)	0.57081 (16)	0.37685 (13)	0.0122 (3)

C1	0.19272 (17)	0.50630 (18)	0.57675 (15)	0.0126 (4)
C2	0.27791 (17)	0.46594 (18)	0.52997 (16)	0.0129 (4)
C3	0.35346 (18)	0.3915 (2)	0.58235 (17)	0.0179 (4)
Н3	0.352295	0.370932	0.648807	0.021*
C4	0.43026 (19)	0.3475 (2)	0.53787 (19)	0.0226 (5)
H4	0.482144	0.297825	0.574183	0.027*
C5	0.43140 (19)	0.3758 (2)	0.44063 (19)	0.0215 (5)
Н5	0.483368	0.344198	0.410012	0.026*
C6	0.35697 (18)	0.4503 (2)	0.38746 (17)	0.0177 (4)
Н6	0.357537	0.469337	0.320563	0.021*
C7	0.28162 (16)	0.49677 (18)	0.43330 (16)	0.0125 (4)
C8	0.13443 (18)	0.5162 (2)	0.29161 (16)	0.0171 (4)
H8A	0.158719	0.435652	0.281465	0.026*
H8B	0.134793	0.564327	0.232522	0.026*
H8C	0.064620	0.512031	0.303871	0.026*
C9	0.18885 (16)	0.68417 (18)	0.40030 (15)	0.0117 (4)
C10	0.26271 (16)	0.73756 (18)	0.48392 (15)	0.0119 (4)
C11	0.32801 (17)	0.8276 (2)	0.46444 (17)	0.0167 (4)
H11	0.327589	0.850944	0.398262	0.020*
C12	0.39357 (18)	0.8830 (2)	0.54209 (18)	0.0199 (5)
H12	0.438192	0.944091	0.528794	0.024*
C13	0.39446 (18)	0.8498 (2)	0.63880 (18)	0.0184 (4)
H13	0.439676	0.888113	0.691482	0.022*
C14	0.32947 (17)	0.76085 (19)	0.65886 (16)	0.0156 (4)
H14	0.329786	0.738136	0.725158	0.019*
C15	0.26396 (16)	0.70524 (18)	0.58134 (16)	0.0122 (4)
C16	0.11200 (19)	0.6633 (2)	0.65496 (19)	0.0194 (5)
H16A	0.043950	0.643723	0.616556	0.029*
H16B	0.118253	0.749831	0.663179	0.029*
H16C	0.121387	0.625301	0.720008	0.029*

Atomic displacement parameters (Å²) for $[Ag_2I_2(mdta)]_n$ (10)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02103 (8)	0.01151 (7)	0.01905 (7)	0.00221 (5)	0.00225 (6)	-0.00038 (5)
I2	0.04606 (11)	0.01508 (8)	0.02712 (9)	-0.00476 (6)	0.02124 (7)	-0.00520 (6)
Ag1	0.02911 (10)	0.01310 (8)	0.02254 (9)	0.00050 (6)	0.00796 (7)	-0.00287 (6)
Ag2	0.02933 (10)	0.01439 (8)	0.02481 (10)	0.00096 (7)	0.00281 (7)	-0.00256 (6)
S1	0.0219 (3)	0.0110 (2)	0.0195 (3)	-0.00238 (19)	0.0108 (2)	-0.00091 (19)
S2	0.0171 (2)	0.0109 (2)	0.0171 (2)	0.00257 (19)	-0.0025 (2)	0.00015 (19)
N1	0.0149 (9)	0.0100 (8)	0.0146 (8)	0.0004 (6)	0.0058 (7)	-0.0001 (6)

N2	0.0133 (8)	0.0118 (8)	0.0109 (8)	0.0020 (6)	0.0011 (6)	-0.0011 (6)
C1	0.0170 (10)	0.0112 (9)	0.0097 (9)	0.0017 (7)	0.0029 (8)	0.0014 (7)
C2	0.0161 (10)	0.0100 (9)	0.0138 (10)	0.0021 (7)	0.0057 (8)	0.0000 (7)
C3	0.0216 (11)	0.0167 (10)	0.0153 (10)	0.0044 (8)	0.0038 (8)	0.0039 (8)
C4	0.0212 (12)	0.0209 (11)	0.0254 (12)	0.0101 (9)	0.0041 (10)	0.0047 (9)
C5	0.0195 (11)	0.0224 (11)	0.0252 (12)	0.0076 (9)	0.0107 (9)	0.0029 (9)
C6	0.0205 (11)	0.0187 (10)	0.0161 (10)	0.0035 (8)	0.0089 (8)	0.0009 (8)
C7	0.0141 (10)	0.0093 (9)	0.0138 (9)	0.0010 (7)	0.0024 (8)	0.0003 (7)
C8	0.0198 (11)	0.0152 (10)	0.0143 (10)	0.0015 (8)	-0.0012 (8)	-0.0026 (8)
C9	0.0129 (9)	0.0119 (9)	0.0116 (9)	0.0000 (7)	0.0052 (7)	0.0010 (7)
C10	0.0120 (9)	0.0091 (9)	0.0140 (9)	0.0015 (7)	0.0010 (7)	-0.0005 (7)
C11	0.0166 (10)	0.0169 (10)	0.0176 (10)	-0.0009 (8)	0.0054 (8)	0.0027 (8)
C12	0.0144 (10)	0.0198 (11)	0.0254 (12)	-0.0051 (8)	0.0034 (9)	-0.0010 (9)
C13	0.0148 (10)	0.0190 (10)	0.0205 (11)	-0.0024 (8)	0.0016 (8)	-0.0025 (9)
C14	0.0182 (10)	0.0139 (9)	0.0132 (9)	0.0011 (8)	-0.0006 (8)	0.0001 (8)
C15	0.0127 (9)	0.0077 (8)	0.0162 (10)	0.0010 (7)	0.0030 (8)	0.0016 (7)
C16	0.0231 (12)	0.0145 (10)	0.0251 (12)	0.0001 (8)	0.0158 (9)	-0.0022 (9)

Geometric parameters (Å, °) for $[Ag_2I_2(mdta)]_n$ (10)

I1—Ag1	2.8001 (2)	C4—C5	1.384 (4)
I1—Ag2 ⁱ	2.9435 (3)	С5—Н5	0.9500
I1—Ag2 ⁱⁱ	2.8884 (3)	C5—C6	1.390 (3)
I2—Ag1	2.7245 (3)	С6—Н6	0.9500
I2—Ag2 ⁱⁱ	2.8643 (3)	C6—C7	1.392 (3)
Ag1—Ag2 ⁱⁱ	3.1479 (3)	C8—H8A	0.9800
Ag1—S1	2.4761 (6)	C8—H8B	0.9800
Ag2—S2	2.5553 (6)	C8—H8C	0.9800
S1—C1	1.686 (2)	C9—C10	1.486 (3)
S2—C9	1.681 (2)	C10—C11	1.395 (3)
N1—C1	1.327 (3)	C10—C15	1.391 (3)
N1—C15	1.442 (3)	С11—Н11	0.9500
N1—C16	1.470 (3)	C11—C12	1.388 (3)
N2—C7	1.447 (3)	С12—Н12	0.9500
N2—C8	1.467 (3)	C12—C13	1.385 (3)
N2—C9	1.334 (3)	С13—Н13	0.9500
C1—C2	1.486 (3)	C13—C14	1.386 (3)
C2—C3	1.394 (3)	C14—H14	0.9500
C2—C7	1.390 (3)	C14—C15	1.388 (3)
С3—Н3	0.9500	C16—H16A	0.9800
C3—C4	1.387 (3)	C16—H16B	0.9800
C4—H4	0.9500	C16—H16C	0.9800
---	--------------	-------------	-------------
Ag1—I1—Ag2 ⁱⁱ	67.178 (7)	C4—C5—C6	120.4 (2)
Ag1—I1—Ag2 ⁱ	84.415 (8)	С6—С5—Н5	119.8
Ag2 ⁱⁱ —I1—Ag2 ⁱ	72.381 (9)	С5—С6—Н6	120.4
Ag1—I2—Ag2 ⁱⁱ	68.508 (7)	C5—C6—C7	119.3 (2)
I1—Ag1—Ag2 ⁱⁱ	57.751 (7)	С7—С6—Н6	120.4
I2—Ag1—I1	111.442 (8)	C2—C7—N2	119.85 (19)
I2—Ag1—Ag2 ⁱⁱ	57.851 (6)	C2—C7—C6	120.8 (2)
S1—Ag1—I1	116.358 (15)	C6—C7—N2	119.23 (19)
S1—Ag1—I2	131.875 (15)	N2—C8—H8A	109.5
S1—Ag1—Ag2 ⁱⁱ	154.729 (16)	N2—C8—H8B	109.5
I1 ⁱⁱⁱ —Ag2—I1 ⁱ	107.619 (9)	N2—C8—H8C	109.5
I1 ⁱⁱⁱ —Ag2—Ag1 ⁱⁱⁱ	55.073 (6)	H8A—C8—H8B	109.5
I1 ⁱ —Ag2—Ag1 ⁱⁱⁱ	101.020 (7)	H8A—C8—H8C	109.5
I2 ⁱⁱⁱ —Ag2—I1 ⁱ	105.316 (8)	H8B—C8—H8C	109.5
I2 ⁱⁱⁱ —Ag2—I1 ⁱⁱⁱ	105.039 (8)	N2—C9—S2	122.39 (16)
I2 ⁱⁱⁱ —Ag2—Ag1 ⁱⁱⁱ	53.639 (6)	N2—C9—C10	118.35 (18)
S2—Ag2—I1 ⁱ	95.564 (14)	C10—C9—S2	119.25 (15)
S2—Ag2—I1 ⁱⁱⁱ	125.352 (14)	C11—C10—C9	118.97 (19)
S2—Ag2—I2 ⁱⁱⁱ	115.597 (16)	C15—C10—C9	121.65 (19)
S2—Ag2—Ag1 ⁱⁱⁱ	162.205 (16)	C15—C10—C11	119.25 (19)
C1—S1—Ag1	105.79 (8)	C10-C11-H11	120.1
C9—S2—Ag2	111.62 (7)	C12—C11—C10	119.8 (2)
C1—N1—C15	122.13 (19)	C12—C11—H11	120.1
C1—N1—C16	120.50 (19)	C11—C12—H12	119.7
C15—N1—C16	117.37 (17)	C13—C12—C11	120.5 (2)
C7—N2—C8	117.31 (17)	C13—C12—H12	119.7
C9—N2—C7	122.38 (17)	С12—С13—Н13	119.9
C9—N2—C8	120.31 (18)	C12—C13—C14	120.1 (2)
N1—C1—S1	121.54 (17)	C14—C13—H13	119.9
N1—C1—C2	118.06 (19)	C13—C14—H14	120.3
C2—C1—S1	120.37 (15)	C13—C14—C15	119.5 (2)
C3—C2—C1	119.52 (19)	C15—C14—H14	120.3
C7—C2—C1	121.28 (19)	C10-C15-N1	119.62 (18)
C7—C2—C3	119.1 (2)	C14—C15—N1	119.30 (19)
С2—С3—Н3	119.9	C14—C15—C10	120.9 (2)
C4—C3—C2	120.3 (2)	N1—C16—H16A	109.5
С4—С3—Н3	119.9	N1—C16—H16B	109.5
C3—C4—H4	120.0	N1—C16—H16C	109.5

C5—C4—C3	120.1 (2)	H16A—C16—H16B	109.5
С5—С4—Н4	120.0	H16A—C16—H16C	109.5
С4—С5—Н5	119.8	H16B—C16—H16C	109.5
Ag1—S1—C1—N1	174.27 (16)	C7—N2—C9—C10	3.7 (3)
Ag1—S1—C1—C2	-7.62 (18)	C7—C2—C3—C4	-1.0 (3)
Ag2—S2—C9—N2	171.99 (16)	C8—N2—C7—C2	-113.3 (2)
Ag2—S2—C9—C10	-9.43 (19)	C8—N2—C7—C6	62.1 (3)
S1—C1—C2—C3	-68.7 (3)	C8—N2—C9—S2	1.9 (3)
S1—C1—C2—C7	108.6 (2)	C8—N2—C9—C10	-176.7 (2)
S2-C9-C10-C11	-65.9 (3)	C9—N2—C7—C2	66.3 (3)
S2—C9—C10—C15	110.0 (2)	C9—N2—C7—C6	-118.2 (2)
N1—C1—C2—C3	109.5 (2)	C9-C10-C11-C12	176.5 (2)
N1—C1—C2—C7	-73.2 (3)	C9-C10-C15-N1	-1.4 (3)
N2-C9-C10-C11	112.7 (2)	C9—C10—C15—C14	-176.3 (2)
N2-C9-C10-C15	-71.3 (3)	C10-C11-C12-C13	-0.2 (4)
C1—N1—C15—C10	67.9 (3)	C11—C10—C15—N1	174.52 (19)
C1—N1—C15—C14	-117.1 (2)	C11—C10—C15—C14	-0.3 (3)
C1—C2—C3—C4	176.3 (2)	C11—C12—C13—C14	-0.1 (4)
C1—C2—C7—N2	0.8 (3)	C12—C13—C14—C15	0.2 (3)
C1—C2—C7—C6	-174.5 (2)	C13—C14—C15—N1	-174.9 (2)
C2—C3—C4—C5	-1.0 (4)	C13—C14—C15—C10	0.0 (3)
C3—C2—C7—N2	178.05 (19)	C15—N1—C1—S1	-177.92 (15)
C3—C2—C7—C6	2.7 (3)	C15—N1—C1—C2	3.9 (3)
C3—C4—C5—C6	1.3 (4)	C15—C10—C11—C12	0.4 (3)
C4—C5—C6—C7	0.4 (4)	C16—N1—C1—S1	2.1 (3)
C5—C6—C7—N2	-177.8 (2)	C16—N1—C1—C2	-176.07 (19)
C5—C6—C7—C2	-2.4 (3)	C16—N1—C15—C10	-112.1 (2)
C7—N2—C9—S2	-177.74 (16)	C16—N1—C15—C14	62.9 (3)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z; (iii) x, y+1, z.

Crystal data for (bdta)

$C_{28}H_{22}N_2S_2$	F(000) = 944
$M_r = 450.59$	$D_{\rm x} = 1.335 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 9.3720 (3) Å	Cell parameters from 10534 reflections
<i>b</i> = 14.5073 (9) Å	$\theta = 1.9 - 30.1^{\circ}$
c = 16.6745 (7) Å	$\mu = 0.26 \text{ mm}^{-1}$

$\beta = 98.533 \ (3)^{\circ}$	T = 120 K
$V = 2242.01 (18) Å^3$	Prism, colourless
Z = 4	$0.41 \times 0.35 \times 0.22 \text{ mm}$

Data collection

STOE IPDS 2T diffractometer	3451 reflections with $I > 2\sigma(I)$
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus	$R_{\rm int}=0.111$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$
rotation method, ω scans	$h = -11 \rightarrow 11$
20437 measured reflections	$k = -17 \rightarrow 17$
4270 independent reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.154$	H-atom parameters constrained
<i>S</i> = 1.15	$w = 1/[\sigma^2(F_o^2) + (0.0235P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
4270 reflections	$(\Delta/\sigma)_{max} < 0.001$
289 parameters	$\Delta \lambda_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rangle_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters

$(Å^2)$ for (bdta)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.40411 (5)	0.30629 (5)	0.55959 (4)	0.0244 (2)
S2	0.82215 (6)	0.47184 (5)	0.42256 (4)	0.0248 (2)
N1	0.61625 (16)	0.25697 (14)	0.47813 (11)	0.0158 (4)
N2	0.78920 (17)	0.41777 (15)	0.57182 (11)	0.0181 (4)

C1	0.8272 (2)	0.39854 (18)	0.49921 (13)	0.0172 (5)
C2	0.8701 (2)	0.30090 (18)	0.48733 (13)	0.0169 (5)
C3	1.0143 (2)	0.2772 (2)	0.48581 (14)	0.0211 (5)
Н3	1.087916	0.322497	0.496229	0.025*
C4	1.0488 (2)	0.1874 (2)	0.46904 (14)	0.0231 (6)
H4	1.147053	0.171156	0.469488	0.028*
C5	0.9436 (2)	0.12080 (19)	0.45162 (14)	0.0230 (5)
Н5	0.968848	0.060040	0.437785	0.028*
C6	0.7996 (2)	0.14364 (19)	0.45457 (14)	0.0197 (5)
H6	0.726082	0.098389	0.443223	0.024*
C7	0.76512 (19)	0.23246 (18)	0.47408 (13)	0.0161 (5)
C8	0.5196 (2)	0.26583 (19)	0.40063 (13)	0.0182 (5)
H8A	0.578601	0.281797	0.358061	0.022*
H8B	0.453164	0.318042	0.405063	0.022*
C9	0.4303 (2)	0.18187 (18)	0.37305 (14)	0.0176 (5)
C10	0.3688 (2)	0.1787 (2)	0.29159 (14)	0.0233 (6)
H10	0.389097	0.226182	0.255662	0.028*
C11	0.2783 (2)	0.1068 (2)	0.26288 (16)	0.0297 (6)
H11	0.236106	0.105090	0.207466	0.036*
C12	0.2494 (2)	0.0371 (2)	0.31532 (18)	0.0292 (6)
H12	0.186372	-0.011958	0.295907	0.035*
C13	0.3121 (2)	0.0390 (2)	0.39548 (17)	0.0257 (6)
H13	0.292855	-0.009109	0.430997	0.031*
C14	0.4033 (2)	0.11092 (18)	0.42476 (14)	0.0203 (5)
H14	0.446976	0.111561	0.479937	0.024*
C15	0.5718 (2)	0.27873 (17)	0.54926 (13)	0.0165 (5)
C16	0.6850 (2)	0.27862 (19)	0.62223 (14)	0.0173 (5)
C17	0.6854 (2)	0.21155 (19)	0.68206 (14)	0.0208 (5)
H17	0.612699	0.165408	0.676585	0.025*
C18	0.7916 (2)	0.2118 (2)	0.74964 (15)	0.0245 (6)
H18	0.791853	0.165561	0.789998	0.029*
C19	0.8970 (2)	0.2793 (2)	0.75828 (14)	0.0240 (6)
H19	0.969944	0.278925	0.804372	0.029*
C20	0.8966 (2)	0.3474 (2)	0.69999 (15)	0.0224 (5)
H20	0.968486	0.394062	0.706222	0.027*
C21	0.7904 (2)	0.34704 (18)	0.63245 (14)	0.0169 (5)
C22	0.7277 (3)	0.5096 (2)	0.58549 (16)	0.0278 (6)
H22A	0.625961	0.511128	0.558892	0.033*
H22B	0.781144	0.556983	0.559280	0.033*
C23	0.7329 (2)	0.53408 (18)	0.67375 (15)	0.0210 (5)

C24	0.8472 (2)	0.58458 (19)	0.71462 (16)	0.0245 (6)
H24	0.923519	0.603205	0.686612	0.029*
C25	0.8517 (2)	0.6081 (2)	0.79507 (16)	0.0278 (6)
H25	0.931421	0.641811	0.822365	0.033*
C26	0.7392 (2)	0.5824 (2)	0.83605 (16)	0.0295 (6)
H26	0.740536	0.599052	0.891256	0.035*
C27	0.6251 (2)	0.5322 (2)	0.79551 (17)	0.0278 (6)
H27	0.548634	0.513848	0.823550	0.033*
C28	0.6206 (2)	0.5086 (2)	0.71543 (16)	0.0241 (6)
H28	0.540778	0.474821	0.688371	0.029*

Atomic displacement parameters $(Å^2)$ for (bdta)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0148 (3)	0.0322 (4)	0.0267 (4)	0.0038 (2)	0.0048 (2)	-0.0030 (3)
S2	0.0359 (4)	0.0211 (4)	0.0182 (4)	-0.0007 (3)	0.0061 (2)	0.0025 (2)
N1	0.0079 (8)	0.0205 (11)	0.0182 (10)	0.0003 (8)	-0.0004 (6)	-0.0010 (8)
N2	0.0194 (9)	0.0186 (12)	0.0161 (10)	0.0000 (8)	0.0020 (7)	0.0011 (9)
C1	0.0095 (9)	0.0240 (14)	0.0175 (12)	-0.0035 (9)	0.0002 (7)	-0.0002 (10)
C2	0.0148 (10)	0.0238 (14)	0.0124 (11)	-0.0011 (9)	0.0032 (7)	-0.0001 (9)
C3	0.0149 (10)	0.0292 (15)	0.0193 (12)	-0.0005 (10)	0.0030 (8)	0.0003 (11)
C4	0.0159 (10)	0.0345 (17)	0.0192 (12)	0.0077 (10)	0.0034 (8)	0.0027 (11)
C5	0.0259 (11)	0.0213 (14)	0.0230 (13)	0.0053 (10)	0.0082 (9)	0.0005 (11)
C6	0.0216 (11)	0.0189 (13)	0.0189 (12)	0.0003 (10)	0.0040 (8)	-0.0001 (10)
C7	0.0103 (9)	0.0209 (14)	0.0173 (11)	0.0028 (9)	0.0029 (7)	0.0021 (10)
C8	0.0145 (10)	0.0220 (14)	0.0170 (12)	-0.0020 (9)	-0.0013 (8)	0.0020 (10)
C9	0.0132 (10)	0.0212 (14)	0.0185 (12)	0.0021 (9)	0.0025 (8)	-0.0007 (10)
C10	0.0207 (11)	0.0293 (15)	0.0197 (13)	0.0034 (10)	0.0020 (8)	-0.0006 (11)
C11	0.0191 (11)	0.0391 (18)	0.0281 (14)	0.0025 (11)	-0.0059 (9)	-0.0087 (13)
C12	0.0196 (12)	0.0226 (16)	0.0445 (17)	-0.0015 (10)	0.0016 (10)	-0.0115 (13)
C13	0.0169 (11)	0.0237 (15)	0.0390 (16)	0.0015 (10)	0.0125 (9)	-0.0017 (12)
C14	0.0154 (10)	0.0258 (14)	0.0206 (12)	0.0006 (10)	0.0055 (8)	-0.0014 (11)
C15	0.0151 (10)	0.0147 (12)	0.0200 (12)	-0.0031 (9)	0.0033 (8)	-0.0001 (10)
C16	0.0117 (9)	0.0227 (13)	0.0181 (12)	0.0031 (9)	0.0040 (7)	-0.0013 (10)
C17	0.0224 (11)	0.0215 (13)	0.0202 (12)	0.0043 (10)	0.0092 (9)	0.0037 (10)
C18	0.0326 (12)	0.0255 (15)	0.0168 (12)	0.0101 (12)	0.0084 (9)	0.0057 (11)
C19	0.0302 (12)	0.0279 (15)	0.0124 (11)	0.0111 (11)	-0.0021 (8)	-0.0014 (11)
C20	0.0220 (11)	0.0224 (15)	0.0222 (13)	0.0025 (10)	0.0010 (8)	-0.0042 (11)
C21	0.0184 (10)	0.0176 (13)	0.0151 (11)	0.0020 (9)	0.0039 (8)	0.0014 (10)
C22	0.0421 (14)	0.0200 (15)	0.0222 (13)	0.0049 (12)	0.0074 (10)	-0.0007 (11)
C23	0.0241 (11)	0.0160 (14)	0.0233 (13)	0.0041 (9)	0.0050 (9)	0.0009 (10)

C24	0.0225 (11)	0.0229 (15)	0.0304 (14)	-0.0044 (10)	0.0108 (9)	-0.0009 (11)
C25	0.0258 (12)	0.0267 (15)	0.0307 (15)	-0.0059 (11)	0.0035 (9)	-0.0044 (12)
C26	0.0367 (13)	0.0308 (17)	0.0219 (13)	0.0062 (12)	0.0074 (10)	-0.0017 (12)
C27	0.0244 (12)	0.0284 (16)	0.0330 (15)	0.0035 (11)	0.0128 (10)	0.0072 (12)
C28	0.0186 (12)	0.0217 (14)	0.0315 (14)	-0.0031 (10)	0.0024 (9)	0.0011 (11)

Geometric parameters (Å, °) for (bdta)

S1—C15	1.655 (2)	C12—C13	1.378 (4)
S2—C1	1.658 (2)	С13—Н13	0.9500
N1—C7	1.451 (2)	C13—C14	1.390 (3)
N1—C8	1.470 (2)	C14—H14	0.9500
N1-C15	1.351 (3)	C15—C16	1.491 (3)
N2—C1	1.341 (3)	C16—C17	1.393 (3)
N2-C21	1.439 (3)	C16—C21	1.393 (3)
N2	1.483 (3)	С17—Н17	0.9500
C1—C2	1.494 (4)	C17—C18	1.388 (3)
C2—C3	1.398 (3)	C18—H18	0.9500
C2—C7	1.392 (3)	C18—C19	1.383 (4)
С3—Н3	0.9500	С19—Н19	0.9500
C3—C4	1.380 (4)	C19—C20	1.386 (4)
C4—H4	0.9500	С20—Н20	0.9500
C4—C5	1.380 (4)	C20—C21	1.388 (3)
С5—Н5	0.9500	C22—H22A	0.9900
C5—C6	1.398 (3)	C22—H22B	0.9900
С6—Н6	0.9500	C22—C23	1.507 (3)
C6—C7	1.379 (4)	C23—C24	1.390 (3)
C8—H8A	0.9900	C23—C28	1.395 (3)
C8—H8B	0.9900	C24—H24	0.9500
C8—C9	1.510 (3)	C24—C25	1.379 (3)
C9—C10	1.395 (3)	С25—Н25	0.9500
C9—C14	1.390 (3)	C25—C26	1.391 (3)
С10—Н10	0.9500	C26—H26	0.9500
C10—C11	1.385 (4)	C26—C27	1.384 (4)
C11—H11	0.9500	С27—Н27	0.9500
C11—C12	1.390 (4)	C27—C28	1.373 (4)
C12—H12	0.9500	C28—H28	0.9500
C7—N1—C8	116.88 (17)	C9—C14—C13	119.8 (2)
C15—N1—C7	121.44 (18)	C9—C14—H14	120.1
C15—N1—C8	121.41 (17)	C13—C14—H14	120.1

C1—N2—C21	120.7 (2)	N1—C15—S1	124.66 (17)			
C1—N2—C22	119.2 (2)	N1-C15-C16	116.21 (17)			
C21—N2—C22	119.68 (18)	C16—C15—S1	119.12 (16)			
N2—C1—S2	125.6 (2)	C17—C16—C15	120.8 (2)			
N2—C1—C2	115.5 (2)	C21—C16—C15	120.3 (2)			
C2—C1—S2	118.91 (16)	C21—C16—C17	118.9 (2)			
C3—C2—C1	121.0 (2)	С16—С17—Н17	119.8			
C7—C2—C1	119.96 (17)	C18—C17—C16	120.3 (2)			
C7—C2—C3	118.9 (2)	С18—С17—Н17	119.8			
С2—С3—Н3	120.3	C17—C18—H18	120.0			
C4—C3—C2	119.4 (2)	C19—C18—C17	120.1 (2)			
С4—С3—Н3	120.3	C19—C18—H18	120.0			
C3—C4—H4	119.3	С18—С19—Н19	119.9			
C3—C4—C5	121.48 (19)	C18—C19—C20	120.3 (2)			
C5—C4—H4	119.3	С20—С19—Н19	119.9			
C4—C5—H5	120.3	С19—С20—Н20	120.2			
C4—C5—C6	119.3 (2)	C19—C20—C21	119.6 (2)			
С6—С5—Н5	120.3	С21—С20—Н20	120.2			
С5—С6—Н6	120.3	C16—C21—N2	119.38 (19)			
C7—C6—C5	119.4 (2)	C20—C21—N2	119.8 (2)			
С7—С6—Н6	120.3	C20—C21—C16	120.8 (2)			
C2C7N1	118.7 (2)	N2—C22—H22A	108.8			
C6—C7—N1	120.0 (2)	N2—C22—H22B	108.8			
C6—C7—C2	121.28 (18)	N2-C22-C23	113.9 (2)			
N1—C8—H8A	108.3	H22A—C22—H22B	107.7			
N1—C8—H8B	108.3	C23—C22—H22A	108.8			
N1—C8—C9	116.0 (2)	C23—C22—H22B	108.8			
H8A—C8—H8B	107.4	C24—C23—C22	120.9 (2)			
С9—С8—Н8А	108.3	C24—C23—C28	118.6 (2)			
C9—C8—H8B	108.3	C28—C23—C22	120.4 (2)			
С10—С9—С8	116.9 (2)	C23—C24—H24	119.4			
С14—С9—С8	123.5 (2)	C25—C24—C23	121.2 (2)			
C14—C9—C10	119.5 (2)	C25—C24—H24	119.4			
С9—С10—Н10	119.9	С24—С25—Н25	120.2			
C11—C10—C9	120.3 (2)	C24—C25—C26	119.7 (2)			
C11—C10—H10	119.9	C26—C25—H25	120.2			
C10—C11—H11	120.1	C25—C26—H26	120.4			
C10-C11-C12	119.9 (2)	C27—C26—C25	119.3 (2)			
С12—С11—Н11	120.1	С27—С26—Н26	120.4			
C11—C12—H12	120.0	С26—С27—Н27	119.5			

C13—C12—C11	120.0 (3)	C28—C27—C26	121.1 (2)
C13—C12—H12	120.0	С28—С27—Н27	119.5
С12—С13—Н13	119.8	С23—С28—Н28	119.9
C12—C13—C14	120.5 (3)	C27—C28—C23	120.1 (2)
C14—C13—H13	119.8	С27—С28—Н28	119.9
S1-C15-C16-C17	70.3 (3)	C9-C10-C11-C12	-0.4 (3)
S1-C15-C16-C21	-108.3 (2)	C10—C9—C14—C13	-1.9 (3)
S2—C1—C2—C3	75.4 (3)	C10-C11-C12-C13	-0.8 (3)
S2—C1—C2—C7	-101.8 (2)	C11—C12—C13—C14	0.7 (3)
N1—C8—C9—C10	-162.98 (19)	C12—C13—C14—C9	0.7 (3)
N1—C8—C9—C14	19.3 (3)	C14—C9—C10—C11	1.8 (3)
N1—C15—C16—C17	-110.6 (2)	C15—N1—C7—C2	-70.2 (3)
N1-C15-C16-C21	70.8 (3)	C15—N1—C7—C6	112.1 (3)
N2-C1-C2-C3	-107.5 (2)	C15—N1—C8—C9	-89.9 (3)
N2—C1—C2—C7	75.3 (3)	C15—C16—C17—C18	179.7 (2)
N2—C22—C23—C24	93.8 (3)	C15—C16—C21—N2	-0.1 (3)
N2-C22-C23-C28	-88.1 (3)	C15—C16—C21—C20	-179.7 (2)
C1—N2—C21—C16	-72.1 (3)	C16—C17—C18—C19	0.6 (4)
C1—N2—C21—C20	107.6 (3)	C17—C16—C21—N2	-178.74 (19)
C1—N2—C22—C23	-161.8 (2)	C17—C16—C21—C20	1.6 (3)
C1—C2—C3—C4	-175.5 (2)	C17—C18—C19—C20	0.5 (4)
C1—C2—C7—N1	-4.5 (3)	C18—C19—C20—C21	-0.6 (4)
C1—C2—C7—C6	173.2 (2)	C19—C20—C21—N2	179.8 (2)
C2—C3—C4—C5	1.7 (4)	C19—C20—C21—C16	-0.5 (3)
C3—C2—C7—N1	178.2 (2)	C21—N2—C1—S2	176.52 (14)
C3—C2—C7—C6	-4.1 (3)	C21—N2—C1—C2	-0.3 (3)
C3—C4—C5—C6	-2.9 (4)	C21—N2—C22—C23	26.1 (3)
C4—C5—C6—C7	0.6 (3)	C21—C16—C17—C18	-1.6 (3)
C5—C6—C7—N1	-179.41 (19)	C22—N2—C1—S2	4.5 (3)
C5—C6—C7—C2	2.9 (3)	C22—N2—C1—C2	-172.41 (19)
C7—N1—C8—C9	95.9 (2)	C22—N2—C21—C16	100.0 (3)
C7—N1—C15—S1	-179.27 (19)	C22—N2—C21—C20	-80.4 (2)
C7—N1—C15—C16	1.7 (3)	C22—C23—C24—C25	179.2 (3)
C7—C2—C3—C4	1.8 (3)	C22—C23—C28—C27	-179.1 (2)
C8—N1—C7—C2	104.0 (2)	C23—C24—C25—C26	-1.1 (4)
C8—N1—C7—C6	-73.7 (3)	C24—C23—C28—C27	-0.9 (4)
C8—N1—C15—S1	6.8 (3)	C24—C25—C26—C27	0.9 (4)
C8—N1—C15—C16	-172.3 (2)	C25—C26—C27—C28	-0.8 (4)
C8—C9—C10—C11	-176.02 (18)	C26—C27—C28—C23	0.8 (4)

C8—C9—C14—C13 175.76 (19) C28—C23—C24—C25 1.0 (4)	
---	--

Tables generated using program *publCIF* [Westrip, S. P. "publCIF: software for editing, validating and formatting crystallographic information files" *J. Apply. Cryst.*, **2010**, *43*, 920-925], https://doi.org/10.1107/S0021889810022120.

Figure S11. CD spectra of 2, 4, 6, 7 and UV-vis (lower curves) spectra of 2, 4 and free ligand mdta taken in acetonitrile.

Figure S12. CD and UV-vis (lower curve) spectra of enantiomers of mdta taken in cyclohexane–dioxane (5:1 v/v).

Figure S13. Absorption spectra of ligands and some complexes dissolved in MeCN.

Figure S14. Fluorescence spectra of ligands and some complexes dissolved in MeCN.

Compound	T [K]	A_1	τ1 [μs]	f_1	A_2	τ ₂ [μs]	f_2	A3	τ3 [μs]	f_3	A_4	τ4 [μs]	f_4	τ _{av} [μs]
$[Cu_5I_5{(R)-(-)-mdta)}(MeCN)_3]_n(2)$	298	0.43	1.1	0.14	0.49	5.6	0.78	0.02	13.1	0.09				5.6
	10	0.54	0.6	0.01	0.30	15.0	0.10	0.45	91.6	0.89				83.4
[Cu ₃ Br ₃ {(<i>R</i>)-(-)-mdta} ₂ (MeCN)] _n (4)	10	0.47	13.0	0.15	0.24	67.0	0.39	0.27	68.0	0.45				59.3
$[Cu_2I_2(mdta)]_n (1)$	10	0.40	0.1	0.00	0.31	3.2	0.08	0.24	45.0	0.91				41.3
$[Cu_2I_2(bdta)(MeCN)]_n (8)$	298	0.30	0.1	0.05	0.32	0.3	0.22	0.36	0.9	0.74				0.7
	10	0.12	0.1	0.00	0.62	23.9	0.97	0.23	1.9	0.03				23.3
$[Cu_2Br_2(bdta)]_n (9)$	298	0.39	0.1	0.06	0.49	0.5	0.56	0.12	1.5	0.38				0.9
	10	0.25	0.1	0.00	0.38	0.5	0.04	0.30	4.1	0.29	0.12	24	0.66	17.1
[Ag ₂ I ₂ (mdta)] _n (10)	10	0.12	15.8	0.03	0.68	50.1	0.54	0.215	128.0	0.43				82.8

Table S2. Average lifetimes and fitting parameters of luminescence decays of complexes in crystal state at various temperatures*

 $*\tau_i$ –lifetime of emission component; A_i – pre-exponential factor, f_i – fractional contribution, calculated as $f_i = A_i \cdot \tau_i / \sum A_i \cdot \tau_i$,

 τ_{av} – intensity-weighted emission lifetime calculated as $\tau_{av} = \sum f_i \cdot \tau_i$.

Figure S15. IR spectrum of mdta

Figure S16. IR spectrum of bdta

Figure S17. IR spectrum of $[Cu_2I_2(mdta)]_n$ (1)

Figure S18. IR spectrum of $[Cu_5I_5{(R)-(-)-(mdta)}(MeCN)_3]_n$ (2)

Figure S19. IR spectrum of $[Cu_2Br_2(mdta)]_n$ (3)

Figure S20. IR spectrum of $[Cu_3Br_3\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (4)

Figure S21. IR spectrum of $[Cu_3Cl_3\{(R)-(-)-(mdta)\}_2(MeCN)_2]_n$ (6)

Figure S22. IR spectrum of $[Cu_3Cl_4\{(R)-(-)-(mdta)\}_2(MeCN)]_n$ (7)

Figure S23. IR spectrum of [Cu₂l₂(bdta)(MeCN)]_n (8)

Figure S24. IR spectrum of $[Cu_2Br_2(bdta)]_n$ (9)

Figure S25. IR spectrum of [Ag₂I₂(mdta)]_n (10)

Figure S26. ¹H NMR spectrum of bdta taken in CDCl₃

Figure S27. ¹³C NMR spectrum of bdta taken in CDCl₃

References

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341.

G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8