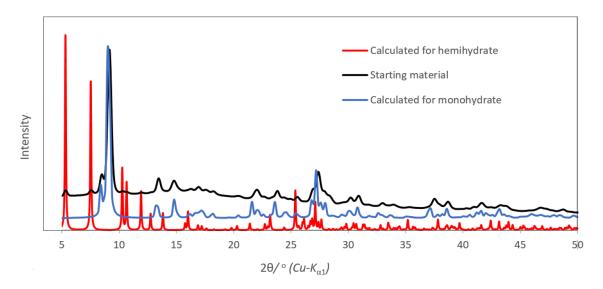
The elusive crystals of calcium acetate hemihydrate: chiral rods linked by parallel hydrophilic strips

Brendan F. Abrahams, Christopher J. Commons,* Timothy A. Hudson, Robin W. Sanchez Arlt School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.

*To whom correspondence should be addressed. Email: christopher.commons@unimelb.edu.au


Electronic supplementary information

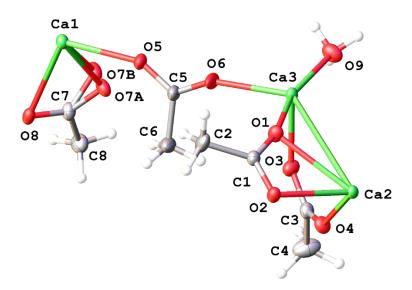
Contents

1. XRPD data and discussion relating to the calcium acetate starting material	2
2. Experimental details relating to alternative attempted synthetic procedures	2
3. Figure S2: Asymmetric unit of calcium acetate hemihydrate	3
4. Table S1: Selected bond lengths for Ca(OAc) ₂ ·½H ₂ O	4
5. Table S2: Selected bond angles for Ca(OAc) ₂ -½H ₂ O	. 5

1. XRPD data and discussion relating to the calcium acetate starting material

X-ray powder diffraction analysis was performed on the $Ca(OAc)_2 \cdot H_2O$ ($OAc^- = CH_3COO^-$) to determine the purity of the starting material. As is apparent from inspection of Figure S1, there is a good match between the experimentally determined powder pattern (black) and the calculated pattern of the monohydrate (blue). There are some very small additional peaks in the experimentally determined powder pattern which match intense peaks in the calculated powder pattern of the hemihydrate (red). This is consistent with the presence of a trace quantity of the hemihydrate in the monohydrate sample. Inspection of the bulk monohydrate under a microscope failed to identify the block-like crystals of the type isolated from 1,4-dioxane, indicating that the original hemihydrate was present as a microcrystalline solid.

Figure S1 Measured XRPD pattern of the starting material (black), measured at 100 K, and the calculated patterns of $Ca(OAc)_2 \cdot H_2O$ (blue) and $Ca(OAc)_2 \cdot \frac{1}{2}H_2O$ (red). Whilst the starting material is composed mainly of the monohydrate, trace amounts of the hemihydrate are present. The calculated pattern of $Ca(OAc)_2 \cdot H_2O$ is based on the room temperature structure reported by E. Klop *et al*, *Acta Crystallogr.*, *Sect. C: Cryst. Struct. Commun.*, 1984, **40**, 51-53.


2. Experimental details relating to alternative attempted synthetic procedures

The formation of the hemihydrate in a 1,4-dioxane solution containing dissolved 4-hydroxybenzoic acid prompted an investigation to determine the importance of the 4-hydroxybenzoic acid in the generation of the hemihydrate crystals. The following reactions were performed to determine whether the hemihydrate could be formed under similar conditions that yielded Ca(OAc)₂·½H₂O but in the absence of the 4-hydroxybenzoic acid or using different solvents.

i) Benzoic acid (0.488 g, 4.00 mmol) was dissolved in 1,4-dioxane (8 mL) and added to a suspension of $Ca(OAc)_2 \cdot H_2O$ (0.316 g, 1.80 mmol) in 1,4-dioxane (4 mL).

- ii) Phenol (0.376 g, 4.00 mmol) was dissolved in 1,4-dioxane (8 mL) and added to a suspension of $Ca(OAc)_2 \cdot H_2O$ (0.316 g, 1.80 mmol) in 1,4-dioxane (4 mL).
- iii) 4-hydroxybenzoic acid (0.552 g, 4.00 mmol) was dissolved in methanol (8 mL) and added to a suspension of $Ca(OAc)_2 \cdot H_2O$ (0.316 g, 1.80 mmol) in methanol (4 mL).
- iv) 4-hydroxybenzoic acid (0.552 g, 4.00 mmol) was dissolved in ethanol (8 mL) and added to a suspension of $Ca(OAc)_2 \cdot H_2O$ (0.316 g, 1.80 mmol) in ethanol (4 mL).
- v) A suspension of Ca(OAc)₂·H₂O (0.316 g, 1.80 mmol) was added to 1,4-dioxane (12 mL).

In each of the five cases indicated above, no usable single crystals of the hemihydrate were formed after 7 days.

3. Figure S2 Asymmetric unit of calcium acetate hemihydrate, $Ca(OAc)_2 \cdot \frac{1}{2} H_2O$ (OAc = CH_3COO), showing the labelling scheme and 50% probability displacement ellipsoids. Oxygen O7 is disordered between two positions, O7A and O7B. The hydrogen atoms on each coordinated water molecule are disordered between three positions which align with the directions to the closest oxygen atoms. One of the neighbours of the oxygen atom of the coordinated water (labelled O9) is a symmetry-related O9 on a neighbouring rod (O9···O9 distance 2.932 Å). The hydrogen atom bonded to the oxygen oriented along this direction must therefore have a maximum occupancy of 0.5.

4. Table S1 Selected bond lengths for Ca(OAc)₂·½H₂O.

Atoms		Length/Å	Atoms		Length/Å
C1	C2	1.504(3)	Ca1	О7В	2.448(7)
C1	01	1.258(2)	Ca1	08	2.7898(14)
C1	02	1.262(2)	Ca2	Ca3	3.7861(4)
C3	C4	1.512(3)	Ca2	01	2.6203(14)
C3	О3	1.258(2)	Ca2	O2	2.4839(13)
C3	04	1.256(2)	Ca2	04	2.3060(13)
C5	C6	1.498(3)	Ca2	08 ^{II}	2.4447(12)
C5	05	1.263(2)	Ca3	Ca3 ^I	4.0415(7)
C5	06	1.255(3)	Ca3	09	2.3765(14)
C7	C8	1.495(3)	Ca3	01	2.2958(13)
C7	07A	1.251(7)	Ca3	О3	2.3111(14)
C7	О7В	1.307(12)	Ca3	O5 ¹	2.4846(14)
C7	08	1.264(2)	Ca3	O6 ¹	2.5236(16)
Ca1	O2 ^{II}	2.3758(13)	Ca3	06	2.3459(16)
Ca1	05	2.3568(14)	Ca3	O8 ^{III}	2.4394(13)
Ca1	07A	2.464(7)			

¹3/2-X,+Y,1-Z; ¹1/4+Y,-1/4+X,3/4-Z; ¹1+X,+Y,1+Z

5. Table S2 Selected bond angles for $Ca(OAc)_2 \cdot \frac{1}{2}H_2O$.

5. Table	S2 Se	elected b	ond angles for Ca	(OAC) ₂ ·½H	l₂O.		
	Atoms	;	Angle/°		Atoms		Angle/°
04	Ca2	$O1^{\vee}$	157.27(4)	05	Ca1	О7В	85.9(6)
04	Ca2	01	84.15(4)	04	Ca2	08 ^{VI}	81.41(5)
04	Ca2	$O2^{\vee}$	151.84(4)	04 ^v	Ca2	08 ^{VI}	85.70(4)
04	Ca2	O2	96.78(5)	08 ^{VI}	Ca2	01	71.89(4)
O4 ^V	Ca2	04	88.91(7)	08 ^{VI}	Ca2	O1 ^v	119.44(4)
04	Ca2	08 ^{IV}	85.70(5)	08 ^{IV}	Ca2	O2 ^v	122.38(4)
09	Ca3	O5 ¹	81.86(5)	08 ^{VI}	Ca2	O2 ^v	71.61(4)
O2'''	Ca1	O2 ^{IV}	84.08(6)	08 ^{IV}	Ca2	08 ^{VI}	161.91(7)
O2 ^{IV}	Ca1	O7A"	175.4(6)	01	Ca3	08 ^{VI}	77.83(5)
O2'''	Ca1	O7A"	94.5(5)	09	Ca3	O6 ¹	80.43(6)
O2'''	Ca1	O7B	169.7(8)	09	Ca3	08 ^{VI}	86.44(5)
O2 ^{IV}	Ca1	O7B	105.3(6)	01	Ca3	09	162.98(6)
O2'''	Ca1	O8"	67.32(4)	01	Ca3	О3	92.47(5)
O2 ^{IV}	Ca1	O8"	134.27(4)	01	Ca3	O5 ¹	87.22(5)
O5"	Ca1	O2 ^{III}	83.20(5)	01	Ca3	O6 ¹	102.88(6)
O5	Ca1	O2 ^{III}	99.71(5)	01	Ca3	06	101.43(6)
O5	Ca1	O5"	176.12(8)	O5	Ca1	О7В"	90.9(6)
O5	Ca1	O7A"	101.3(5)	O5"	Ca1	08 ^{II}	110.80(4)
O5	Ca1	O7A	75.8(5)	O5"	Ca1	08	68.33(4)
O5"	Ca1	О7В	90.9(6)	O7A"	Ca1	O7A	87.3(11)
07A	Ca1	O8 ^{II}	111.18(18)	06	Ca3	09	95.24(7)

	Atoms		Angle/°		Atoms		Angle/°
O7A ^{II}	Ca1	0811	48.26(12)	06	Ca3	O5 ¹	118.25(5)
О7В"	Ca1	О7В	65.8(11)	06	Ca3	O6 ¹	67.02(7)
O7B	Ca1	08 ^{II}	107.4(3)	06	Ca3	08 ^{VI}	169.23(5)
О7В"	Ca1	08 ^{II}	49.3(2)	08 ^{VI}	Ca3	O5 ¹	72.51(5)
08	Ca1	08 ^{II}	155.72(5)	Ca1 ^{VII}	02	Ca2	116.76(5)
O1 ^v	Ca2	01	109.84(6)	O2 ^V	Ca2	01	80.03(4)
08 ^{VI}	Ca3	O6 ¹	123.72(5)	O2 ^V	Ca2	O1 ^v	50.82(4)
Ca3	01	Ca2	100.52(5)	02	Ca2	$O2^{\vee}$	91.11(6)
О3	Ca3	09	91.77(5)	Ca1	05	Ca3 ¹	115.51(5)
О3	Ca3	05 ¹	154.22(5)	Ca3	06	Ca3 ¹	112.14(6)
О3	Ca3	O6 ¹	151.89(5)	Ca2 ^{VIII}	08	Ca1	104.30(5)
О3	Ca3	06	87.09(5)	Ca3 ^{VIII}	08	Ca1	102.90(5)
О3	Ca3	08 ^{VI}	82.22(5)	Ca3 ^{VIII}	08	Ca2 ^{VIII}	101.65(5)
O5 ¹	Ca3	06 ¹	51.59(5)				

 $^{^{1}3/2-}X,+Y,1-Z;\ ^{1}3/2-X,+Y,-Z;\ ^{1}1/4+Y,-1/4+X,-3/4+Z;\ ^{1}1/4+Y,-1/4+X,3/4-Z;\ ^{1}1/4+Y,-1/4+X,7/4-Z;\ ^{1}1/4+Y,-1/4+X,7/4-Z;\ ^{1}1/4+Y,-1/4+X$