Electronic Supplementary Information

Ligand-mediated strategy for fabrication of hollow Fe-based MOFs and their derived Fe/NC nanostructures with enhanced oxygen reduction reaction

Yan Liu,^a Yamin Zheng,^a Panpan Dong,^a Ning Lu,^a Ruirui Zhang^b and Junjie Mao^{*a}

^aKey Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Anhui Normal University, Wuhu, 241002, China. E-mail: maochem@ahnu.edu.cn

^bDepartment of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, 85748 Garching, Germany.

1. Experimental methods and characterizations

1.1 Reagents.

Ferric chloride hexahydrate, terephthalic acid (98.0 %), dimethylformamide, hexamethylenetetramine (99.0 %), ethanol and hydrochloric acid (38.0-40.0 %) were obtained from Sinopharm Chemical. In all of the experiments, the deionized water was obtained through ion-exchange and filtration. All the reagents were utilized without further purification.

1.2 Synthesis.

Synthesis of Fe-MOF:

Normally, 296 mg ferric chloride and 200 mg terephthalic acid were dissolved in the mixed solution of 20 ml DMF and 6 ml ethanol under vigorous stirring. After stirring for 30 minutes at room temperature, the mixture was transferred into 50 mL Teflon-lined stainless-steel autoclave, placed in an oven and heated at 150 $^{\circ}$ C for 3 h. After cooling down to room temperature, the Fe-MOF were obtained by centrifugation and washed with ethanol for several times.

Synthesis of Fe-MOF with hollow octahedral morphology:

Normally, 100 mg Fe-MOF and 200 mg Hexamethylenetetramine were dissolved in 30ml ethanol under vigorous stirring. After stirring for 30 minutes, the mixture was transferred into 50 mL Teflon-lined stainless-steel autoclave, and placed in an oven and heated at 170 $^{\circ}$ C for 20 h. After cooling down to room temperature, the hollow Fe-MOF were collected by centrifugation and washed with ethanol for several times.

Synthesis of o-Fe/NC:

Firstly, hollow octahedral shaped Fe-MOF was pyrolyzed at 900 $^{\circ}$ C under N₂ atmosphere for 3 h. After colling to room temperature, the above sample was treated with1 M HCl solution and stirring for 10 h to remove unstable Fe species.

1.3 Morphology analysis.

The morphology of the samples was characterized by transmission electron microscope (TEM) was operated by a Hitachi-7700 working at 100 kV. The HAADF-STEM images were obtained by FEI Tecnai G2 F20 S-Twin HRTEM which worked at 200 kV. HAADF-STEM images were obtained by using a Titan Cubed Themis 60–300 scanning transmission electron microscope operated at 300 kV, equipped with a probe spherical aberration corrector. The metal content of single atom catalysts was characterized by inductively coupled plasma-mass spectrometry (ICP-MS), which was carried out on Thermo Fisher IRIS Intrepid II. Powder X-ray diffraction pattern (PXRD) was used a Rigaku D/max 2500Pc X-ray powder diffractometer with monochromatized Cu K α radiation ($\lambda = 1.5418$ Å).

1.4 Electrochemical measurements.

The ORR performance was measured by CHI760E electrochemical station with three-electrode system in 0.1 M KOH solution. Catalyst ink was preapared by 10 mg of catalyst ultrasonically dispersed into the mixture (2 mL) of ethanol (0.990 mL), water (0.990 mL) and Nafion solution (20 μ L) for 30 min. Then 20 μ L of the catalyst suspension was dropped on a fresh glassy carbon (GC) electrode. The substrate for the working electrode employed a rotating disk electrode (RDE) along with 5 mm diameter of GC disk. A graphite rod and Ag/AgCl electrode were selected as the counter electrode and reference electrode, respectively. The cyclic voltammetry (CV) tests were performed in O₂-saturated 0.1 M KOH solution with a scan rate of 50 mV s⁻¹. The linear sweep voltammetry (LSV) experiments were determined using RDE tests (1600 rpm). For further determine the long-term durability, the accelerated durability test was conducted with continuously cycling between 0.6 and 1.0 V vs. RHE in O₂-saturated 0.1 M KOH solution. Moreover, the tolerance to CH₃OH was verified by cyclic voltammetry measurements in O₂-saturated 0.1 M KOH solution.

1.5 Calculation details.

All the density functional theory (DFT) calculations were performed in the Vienna ab $(VASP)^1$. Perdew-Burke-Ernzerhof $(PBE)^2$ simulation package initio exchange-correlation functional and projector augmented-wave (PAW)³ potential were employed to describe electronic exchange-correlation effect and electron-ion interaction, respectively. The force and energy convergence criterion were set to be 0.02 eV/Å and 10^{-5} eV , respectively. The energy cutoff of 500 eV was employed for the plane wave expansion and a 15 Å vacuum region was constructed to avoid interactions between adjacent images. The Brillouin zone was sampled by $3\times3\times1$ k-meshs in the Monkhorst-Pack⁴ scheme. The overpotential for the ORR was calculated by the computational hydrogen electrode model⁵. The Gibbs-free-energy change (ΔG) of each oxygen reduction reaction (ORR) step was computed by the following equation:

$$\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_U + \Delta G_{pH}$$

Where ΔE is the energy change, ΔZPE and ΔS is the zero point energy and entropy change at 298.15 K, respectively. $\Delta G_U = -eU$ represents the devotion from an electron transferring at the electrode potential U. $\Delta G_{pH} = kBTln10 \times pH$ is the contribution of the hydrogen ion. U and pH are set to be 0.

The overall reaction of O_2 reduction to H_2O in acidic environment is a four-electron reaction: $O_2 + 4H^+ + 4e^- \rightarrow 4H_2O$, which is divided into the following four fundamental steps:

(1) * +O₂ (g) + H⁺ + $e^- \rightarrow$ *OOH

- (2) *OOH + H⁺ + $e^- \rightarrow *O + H_2O(l)$
- $(3) *O + H^+ + e^- \rightarrow *OH$
- $(4) *OH + H^+ + e^- \rightarrow H_2O(l) + *$
- * represents the adsorption site.

The overpotential (η), a critical parameter of the ORR activity, is defined as η =1.23 eV- $|\Delta Gmin|/e$, where $\Delta Gmin$ is the minimum Gibbs free energy of the four reactions above.

2. Supplementary Figures

Figure S1. PXRD patterns of the Fe-MOFs.

Figure S2. PXRD patterns of the hollow Fe-MOFs.

Figure S3. HAADF-STEM image and corresponding EDS element mapping images of the o-Fe/NC

Figure S4. HAADF-STEM image and corresponding EDS element mapping images of Fe/NC.

Figure S5. The XPS spectrum of C1s for the o-Fe/NC.

Figure S6. The XPS spectrum of N1s for the m-Fe/NC.

Figure S7. The XPS spectrum of Fe 2p for the o-Fe/NC.

Figure S8. N_2 adsorption and desorption isotherms and the pore size distribution curves of (a) o-Fe MOF, (b) o-Fe/NC and (c) m-Fe/NC.

Figure S9. Geometric models of Fe atom coordinated with (a) pyridinic-N, (b,c) pyrrolic-N.

Reaction pathway

Figure S10. Free energy diagrams of oxygen reduction reaction processes for models of pyridinic-N, pyrrolic-N-1 and pyrrolic-N-2.

Step	pyridinic-N	pyrrolic-N-1	pyrrolic-N-2
* + $O_2(g)$ + H ⁺ + e ⁻ \rightarrow *OOH	-0.86	-1.29	-0.87
$*OOH + H^+ + e^- \rightarrow *O + H_2O(l)$	-2.50	-1.81	-3.27
$*O + H^+ + e^- \rightarrow *OH$	-0.62	-1.53	-0.50
$*OH + H^+ + e^- \rightarrow H_2O(l) + *$	-0.94	-0.29	-0.28

Table S1. The change in Gibbs free energy (ΔG) of each oxygen reduction reaction (ORR) step on surface of pyridinic-N, pyrrolic-N-1 and pyrrolic-N-2.

Figure S11. Geometric structures of Fe atom coordinated with (a) pyridinic-N, (b) pyrrolic-N-1, (c) pyrrolic-N-2, and the intermediates *OOH, *O, and *OH for ORR.

3. References

- (1) G. Kresse, J. Furthmiiller, Comput. Mater. Sci., 1996, 6, 15-50.
- (2) J. P. Perdew, K. Burke, M. Ernzerhof, Phy. Rev. Lett., 1996, 78, 3865-3868.

(3) P. E. Blochl, Phys. Rev. B, 1994, 50, 17953-17979.

(4) J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, *Phys. Chem. B*, 2004, **108**, 17886-17892.

(5) H. Monkhorst, J. Pack, Phys. Rev. B, 1976, 13, 5188-5192.