Facile construction of N-doped carbon nanotubes encapsulated Co nanoparticles as a highly efficient multifunctional catalyst for electrochemical reactions

Shujun Chao ^{a,*}, Ping Liu ^a, Qingyun Xia ^a, Shuang Liu ^b, WenGe Chen ^b, Wenge Li ^b, Tianjun Ni ^{a,*}

^a Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China
^b School of Pharmacy, Xinxiang Medial University, Xinxiang 453003, P. R. China
E-mail address: chaoshujun1979@163.com (S. Chao); tjni@xxmu.edu.cn (T. Ni)
Tel: +86-373-3029128 and 3831859; fax: +86-373-3029128 and 3831859.

Supporting Information

Contents

Fig. S1 High magnified TEM image of Co@NCNDs.

Table S1. List of the ORR, OER and HER performances of the recently reported nonprecious metal catalysts. All measured potentials were normalized to a reversible hydrogen electrode (RHE) scale.

Fig. S1 High magnified TEM image of Co@NCNDs.

Table S1. List of the ORR, OER and HER performances of the recently reported nonprecious metal catalysts in 0.1 or 1 M KOH solution. All measured potentials were normalized to a reversible hydrogen electrode (RHE) scale.

Materials	E_0/V	$E_{1/2} / V$	$\eta_{10,OER}/V$	$\eta_{10,HER}/V$	ΔE (E _{j=10,OER}	References
					- E _{1/2,ORR})	
Co@NCNTs	1.01	0.87	0.33	0.28	0.69	This work
CoFe@N-	0.86	0.80	0.27	0.09	0.70	[1]
GCNCs-700						
CoP-PBSCF	0.80	0.75	0.38	0.21	0.86	[2]
PPy/FeTCPP/Co	1.01	0.86	0.38	0.24	0.75	[3]
3D-CNTA	0.96	0.81	0.36	0.19	0.72	[4]
CF-NG-Co	0.97	0.88	0.40	0.18	0.76	[5]
NiCoP/CNF900	0.94	0.82	0.27	0.13	0.68	[6]
MNG-CoFe	0.98	0.70	0.39	0.23	0.92	[7]
MSZIF-900	0.93	0.84	0.34	0.23	0.73	[8]
DG	0.91	0.76	0.34	0.34	0.81	[9]
CoDNG900	0.94	0.83	0.40	0.23	0.80	[10]

References

- Jia Y, Zhang L, Du A, G. Gao, J. Chen, X. Yan, C. L. Brown and X. Yao, Adv. Mater., 2016, 28, 9532-9538.
- 2 G. Jia, W. Zhang, G. Fan, Z. Li, D. Fu, W. Hao, C. Yuan and Z. Zou, Angew. Chem., 2017, 129, 13969-13973.
- 3 J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong and H. Xu, Adv. Funct. Mater., 2017, 27, 1606497.
- 4 S. Wang, J. Qin, T. Meng and M. Cao, Nano Energy, 2017, 39, 626-638.
- 5 Z. Pei, Z. Tang, Z. Liu, Y. Huang, Y. Wang, H. Li, Q. Xue, M. Zhu, D. Tang and C. Zhi, J. Mater. Chem. A, 2018, 6, 489-497.
- 6 S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam and R. K. Selvan, Adv. Energy Mater., 2018, 8, 1800555.
- 7 W. Niu and Y. Yang, ACS Appl. Energy Mater., 2018, 1, 4413-4413.
- 8 Y. Q. Zhang, H. B. Tao, Z. Chen, M. Li, Y. F. Sun, B. Hua and J. L. Luo, J. Mater. Chem. A, 2019, 7, 26607-26617.
- 9 H. J. Niu, Y. P. Chen, R. M. Sun, A. J. Wang, L. P. Mei, L. Zhang, J. J. Feng, J. Power Sources, 2020, 7, 26607-26617.
- 10 A. Wang, C. Zhao, M. Yu and W. Wang, Appl Catal B: Environ, 2021, 281, 119514.