Supplementary Information

Ni/Co phosphide nanoparticles embedded in N/P-doped carbon nanofibers towards enhanced hydrogen evolution

Changle Wang,^{a, b} Lipeng Zhang,*a Ping Yang*b

^a School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P.R. China, email: zhanglipeng@sdut.edu.cn

^bSchool of Material Science and Engineering, University of Jinan, Jinan, 250022, P.R. China, email: yangp@ujn.edu.cn

^cCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China

Fig. S1. XRD patterns of samples. (a), Ni₂P/NPNFs. (b), Co₂P/NPCNFs.

Fig. S2. (a) HER polarization curves of Ni₂P/NPNFs-0.5, Ni₂P/NPNFs-2, NiCoP/NPNFs-1, NiCoP/NPNFs-2, (b) Tafel plot derived from the HER polarization curves.

Fig. S3. Cyclic voltammograms plots of samples as electrodes with different scan rates. (a), Ni₂P/NPNFs. (b), Co₂P/NPNFs. (c), NiCoP/NPNFs. (d), NiCoP/NPNFs-1. (e), NiCoP/NPNFs-2.

In 0.5mol/L H_2SO_4 , CV tests were conducted on different materials at scanning rates of 20, 40, 60, 80, 100 and 120mv/s, respectively. The test range was set at the stage where Faraday current was not generated. The corresponding electrochemical area was calculated according to the equation (1):

$$A \frac{Sample}{ECSA} = \frac{specific capacitance}{60\mu F/cm^2}$$
(1)

ECSA ($Ni_2P/NPNFs$) =299.5cm²

ECSA ($Co_2P/NPNFs$) =123.5cm²

ECSA (NiCoP/NPNFs) =311.67cm²

ECSA (NiCoP/NPNFs-1) =151.83cm²

ECSA (NiCoP/NPNFs-2) =163.5cm²