Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Supporting information

A high- T_c organic-ionic phase transition crystal obtained from trivalent cation

Yu-Hua Liu,‡ Jun-Chao Liu,‡ Hang Peng,‡ Xue-Qin Huang, Wei-Qiang Liao* and Zhong-Xia Wang*

Experiment

Figure. S1 IR spectrum of 1.

Figure. S2 TGA curve of 1.

Figure. S3 The real part (ε ') of complex dielectric constant of **1** upon heating at 500 Hz, 1 kHz, 5 kHz, 10 kHz, and 1000 kHz.

Table S1 Bond length (Å) and bond angle (°) of 1 at 293 K.

Table S2 Crystallographic data and structural refinement for 1.

Table S3 Hydrogen-bonding information of 1 at 293 K.

Experiment

Synthesis. The chemical reagent was purchased and can be used directly without further purification. A large amount of colorless bulk crystals of 1 were collected by slow evaporation of an aqueous solution containing a stoichiometric ratio of the reactants.

Differential scanning calorimetry. Differential scanning calorimetry (DSC) measurements were performed using a NETZSCH DSC 200F3 instrument. The powder samples were placed in aluminum crucibles and measured in the temperature range between 320 K and 400 K under a nitrogen atmosphere at heating and cooling rates of 20 K min⁻¹.

Single-crystal X-ray diffraction measurement. Single-crystal X-ray diffraction data of compound **1** was performed on a Rigaku Saturn 924 diffractometer with Mo-K α radiation ($\lambda = 0.71073$ A°) at 293 K and 403 K. Structures of the complexes were determined by the direct methods routines in the SHELXS program and refined by full-matrix least-squares methods on F² in SHELXL.

Powder X-ray diffraction. Powder X-ray diffraction (PXRD) data for compound 1 from 293 K to 413 K were obtained using a Rigaku D/MAX 2000 PC X-ray diffractometer and the diffraction patterns were collected in the range of $2\theta = 5^{\circ} - 40^{\circ}$ with a step size of 0.02° .

IR spectrum and TGA measurement. IR spectra were recorded at ambient temperature using a Shimadzu model IR-60 spectrometer with KBr pellets. TGA test for **1** at a rate of 10 K min⁻¹ in the range of 300 K-1000 K.

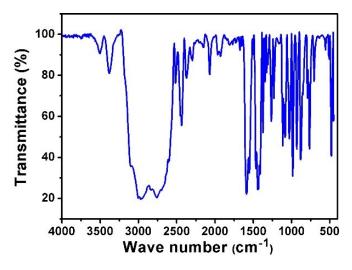
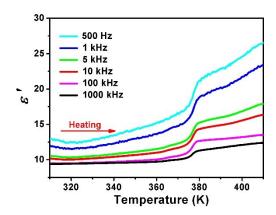



Figure S1. IR spectrum of 1.

Figure S2. TGA curve of 1. TGA test results showed that 1 is stable up to 500 K.

Figure S3. The real part (ε ') of dielectric constant of **1** during heating at 500 Hz, 1 KHz, 5 KHz, 10 KHz, 100 KHz and 1000 KHz.

Table S1 length (Å) angle (°) K.					Bond
	C1-N1	1.497(3)	N1-C1-C2	117.7(2)	and bond of 1 at 293
	C1-C2	1.511(3)	N2-C2-C1	114.7(2)	
	C2-N2	1.499(3)	N2-C3-C4	115.0(2)	
	C3-N2	1.494(3)	C3-C4-N3	113.5(2)	
	C3-C4	1.499(3)	N3-C5-C6	116.5(2)	
	C4-N3	1.509(3)	N1-C6-C5	117.4(2)	
	C5-N3	1.491(3)	N4-C7-C8	116.08(19)	
	C5-C6	1.511(3)	C7-C8-N5	114.3(2)	
	C6-N1	1.504(3)	N5-C9-C10	116.2(2)	
	C7-N4	1.491(3)	N6-C10-C9	116.3(2)	
	C7-C8	1.501(4)	N6-C11-C12	116.7(2)	
	C8-N5	1.506(3)	N4-C12-C11	116.2(2)	
	C9-N5	1.494(3)	C1-N1-C6	118.8(2)	
	C9-C10	1.512(3)	C3-N2-C2	116.7(2)	
	C10-N6	1.507(3)	C5-N3-C4	116.02(19)	
	C11-N6	1.502(3)	C7-N4-C12	116.2(2)	
	C11-C12	1.503(3)	C9-N5-C8	116.32(19)	

C11-N6-C10

117.2(2)

Table S2 Crystallographic data and structural refinement for 1.

1.501(3)

C12-N4

	1 (293 K)	1 (403 K)
Formula	$C_6H_{18}Cl_3N_3$	$C_6H_{18}Cl_3N_3$
Formula weight	238.58	238.58
Crystal system	Monoclinic, $P2_1/n$	Trigonal, Rm
a / Å	10.9842(3)	8.0160(5)
b / Å	7.9342(2)	8.0160(5)
c / Å	25.1271(7)	15.1863(12)
α (deg)	90	90
β (deg)	91.717(2)	90
γ (deg)	90	120
V / Å 3	2188.86(10)	845.08(12)
Z , D $_{ m calcd}$ / g cm ⁻³	8, 1.448	3, 1.406
F(000)	1008	378
Goodness-of-fit on F ²	1.001	1.010
$R_1^a (> 2\sigma)$	0.0508	0.0887
$wR_2^b (> 2\sigma)$	0.1302	0.2290

[[]a] $R_1 = \overline{\Sigma ||F_o| - |F_c||/\Sigma |F_o|}$, [b] $wR^2 = [\Sigma (|F_o|^2 - |F_c|^2) / \Sigma |F_o|^2]^{1/2}$

Table S3 Hydrogen-bonding information of **1** at 293 K.

D-HA	d(D-H)/Å	d(H-A)/Å	d(D-H)/Å	D-HA/°
N1-H1C-Cl5 ¹	0.89	2.21	3.062(2)	160.8
N1-H1D-Cl3 ¹	0.89	2.24	3.075(2)	156.2
N2-H2C-C14 ³	0.89	2.31	3.088(2)	145.8
N2-H2D-C12 ²	0.89	2.28	3.121(2)	158.4
N3-H3C-Cl1 ⁴	0.89	2.86	3.324(2)	114.0
N3-H3C-Cl6 ¹	0.89	2.52	3.209(2)	134.3
N3-H3D-C12 ²	0.89	2.27	3.153(2)	170.2
N4-H4C-Cl6 ⁶	0.89	2.29	3.120(2)	155.4
N4-H4D-Cl1 ⁵	0.89	2.31	3.099(2)	147.1
N5-H5C-C1597	0.89	2.71	3.285(2)	123.9
N5-H5C-Cl6	0.89	2.77	3.380(2)	127.0
N5-H5D-Cl15	0.89	2.30	3.170(2)	166.6
N6-H6C-C13 ⁷	0.89	2.27	3.119(2)	159.7
N6-H6D-Cl2	0.89	2.28	3.132(2)	161.3

1/2-X,-1/2+Y,1/2-Z; ²-1+X,+Y,+Z; ³1/2-X,1/2+Y,1/2-Z; ⁴1-X,1-Y,1-Z; ⁵3/2-X,-1/2+Y,1/2-Z; ⁶+X,-1+Y,+Z; ⁷1+X,+Y,+Z;