Magnetic relaxation in a Co(II) chain complex: synthesis, structure, and DFT computational coupling constant

Wen-Hao Wu,^a Ya-Qun Wang,^a Hong-Li Mi,^a Qing-Xuan Xue, ^a Feng Shao, ^c Fei Shen ^{*b} and Feng-Lei Yang^{*a,c}

a School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China E-mail: <u>yangfl@jsnu.edu.cn</u>; doctorfly@yeah.net;

- b College of Physical Education and Health & Education Ministry Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, P. R. China
- c Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France

Contents

Structure description	2
Fig. S1. FT-IR spectra of 1 at room temperature	2
Fig. S2. XRD of 1 at room temperature	3
Table S1. Hydrogen bonds for 1 [Å and °.].	3
Fig S3 The TGA (left) and UV-Vis spectrum (right) of 1	3
Simulation of Coupling constant from $\chi_M T$ vs. T curve in detail (alternative dinuclear-Co2 chain model without considering magnetic anisotropy, using software Origin):	3
1. Deduction of the <i>J</i> (coupling constant) unit	3
2. χ_d (molar magnetic susceptibility of Co2 dimmer):	4
3. For alternative chain by Rojo formula (Inorg. Chem. 1997, 36, 677)	4
4. For alternative chain of Co(II) dimmer in our system:	4
5. The function file for fitting in OriginPro2021 with the J unit in cm ⁻¹ , in two column	4
Simulation of Coupling constant from $\chi_M T$ vs. T curve using software Magpack ¹ (ring model of chain compound considering magnetic anisotropy):	5
Scheme S1. The ring-model of the chain compounds to calculate the coupling constant using the software Magpack.	5
The Spin Hamiltonian Equation of ring-model of the chain compound (Scheme S1) as follows:	6
Fig S4 The best fit of $\chi_M T vs. T$ curve using software Magpack (the black square is the experimental $\chi_M T vs. T$ curve and the red solid line is the best fit by the ring-model of chair compound)	n 6
The input files of parani21	6
	51

The input files of parani227
DFT calculations on the magnetic coupling constants9
Fig. S5 . The spin configurations of the two tetramers in one lattice unit cell, the direction of the arrows representing the spin orientation: a) all the spins up in the high-spin state (HS); b) only the spin of Co5 down in the first broken-symmetry state (BS1); c) only the spin of Co4 down in the second broken-symmetry state (BS2); d) only the spin of Co2 and Co6 down in the third broken-symmetry state (BS3),10
Table S2. DFT calculation results for the molecules in one unit cell
Fig. S6. Evolution of ΔH_{elec} with U for (left) Fe ^{II} and (right) Fe ^{III} compounds (copied from ref. ⁷).
Fig. S7 Isothermal field-dependence of the magnetization per Co2 at multiple temperatures for 1a12
Dynamic magnetic properties13
Fig. S8. The Cole-Cole plots of 1a at various temperatures, red lines are the best fits13
Table S3 The α values from the fitting of the Cole-Cole plots of Fig. S813
References

Structure description

Fig. S1. FT-IR spectra of 1 at room temperature.

Fig. S2. XRD of 1 at room temperature.

1. Deduction of the J (coupling constant) unit

k or $k_{\rm B}$ is Boltzmann constant, $k=1.3806503 \times 10^{-23}$ J/K

1 cm⁻¹= 1.986× 10⁻²³ J=1.441 K

So,
$$k=1.3806503 \times 10^{-23}$$
 J/K=1.3806503×10⁻²³/(1.986×10⁻²³) cm⁻¹/K=0.69519149 cm⁻¹/K

- If 1/k=1.441 K/cm^{-1,} the unit of J is cm⁻¹
- If 1/k=1.441 K/cm⁻¹=1 cm⁻¹/cm⁻¹=1, the unit of J is K

2. Xd (molar magnetic susceptibility of Co2 dimmer):

$$\begin{split} \chi_{d} &= \frac{Ng^{2}\beta^{2}}{3kT}S_{d}(S_{d}+1) \\ S_{d}(S_{d}+1) &= 6 \times \frac{\exp(2J_{d}/kT) + 5\exp(6J_{d}/kT) + 14\exp(12J_{d}/kT)}{1 + 3\exp(2J_{d}/kT) + 5\exp(6J_{d}/kT) + 7\exp(12J_{d}/kT)} = \frac{\sum S_{T}(S_{T}+1)(2S_{T}+1)\exp(-E_{S}/kT)}{\sum (2S_{T}+1)\exp(-E_{S}/kT)} \\ \chi_{d} &= \frac{2Ng^{2}\beta^{2}}{kT} \frac{\exp(2J_{d}/kT) + 5\exp(6J_{d}/kT) + 14\exp(12J_{d}/kT)}{1 + 3\exp(2J_{d}/kT) + 5\exp(6J_{d}/kT) + 7\exp(12J_{d}/kT)} + 4 \end{split}$$

3. For alternative chain by Rojo formula (Inorg. Chem. 1997, 36, 677)

$$\chi = \frac{Ng^2\beta^2}{3kT} \frac{1 + u_1 + u_2 + u_1u_2}{1 - u_1u_2} S(S+1)$$

 $u_1 = \operatorname{coth}[J_1S(S+1)/kT] - kT/J_1S(S+1), u_2 = \operatorname{coth}[J_2S(S+1)/kT] - kT/J_2S(S+1)$

4. For alternative chain of Co(II) dimmer in our system:

we can get the following equation:

$$\chi = \frac{Ng^2 \beta^2}{3kT} \frac{1 + u_1 + u_2 + u_1 u_2}{1 - u_1 u_2} S_d(S_d + 1)$$

$$S_d(S_d + 1) = 6 \times \frac{\exp(2J_1/kT) + 5\exp(6J_1/kT) + 14\exp(12J_1/kT)}{1 + 3\exp(2J_1/kT) + 5\exp(6J_1/kT) + 7\exp(12J_1/kT)} \psi$$

 $u_1 = \operatorname{coth}[J_2S_d(S_d+1)/kT] - kT/J_2 S_d(S_d+1), u_2 = \operatorname{coth}[J_3S_d(S_d+1)/kT] - kT/J_3S_d(S_d+1)$

5. The function file for fitting in OriginPro2021 with the J unit in cm^{-1} , in two column

[General Information]	[Fitting Parameters]
Function Name = Co2alternativechain	Names = J2,g,J3,J1,zJ,Theta,TIP
Brief Description =	Initial Values =(V)
Function Source = N/A	Meanings = ?
Number Of Parameters = 7	Lower Bounds = (X, OFF)
Function Type = User-Defined	Upper Bounds =(X, OFF)
Function Form = Equations	Naming Method = User-Defined
Path =	Number Of Significant Digits =
Number Of Independent Variables = 1	Unit =
Number Of Dependent Variables = 1	[Independent Variables]
FunctionPrev = NewFunction1	T =

[Dependent Variables]	Initialization Scripts = 0
ChimT =	Scripts After Fitting = 0
[Formula]	Number Of Duplicates = N/A
double k=0.69503887;	Duplicate Offset = N/A
double NB2=0.260727165;	Duplicate Unit = N/A
double $x=1/(k*T);$	Generate Curves After Fitting = 1
double u1,u2;	Curve Point Spacing = Uniform on X-Axis Scale
double	Generate Peaks After Fitting = 1
$temp3=6^{(2*x*J1)+5*exp(6*x*J1)+14*exp(1)}(1+3*exp(2*x*J1)+5*exp(6*x*J1)+14*exp(1))$	Generate Peaks During Fitting = 1
p(12*x*J1));	Generate Peaks with Baseline = 1
u1=cosh(x*J2*temp3)/sin(x*J2*temp3)- 1/(x*J2*temp3);	Paste Parameters to Plot After Fitting = 1
u2=cosh(x*J3*temp3)/sin(x*J3*temp3)-	Paste Parameters to Notes Window After Fitting = 1
1/(x*J3*temp3);	Generate Residuals After Fitting $= 0$
double chi=0.125*g*g*(1+u1+u2+u1*u2)/(1- u1*u2)*temp3/(T-Theta);	Keep Parameters = 0
double chid=1/chi-2.0*zJ/(NB2*g^2);	Compile On Param Change Script = 1
ChimT=T*(1/chid+TIP);;	Enable Parameters Initialization = 1
[Initializations]	[Compile Function]
[After Fitting]	Compile = 1
[Controls]	Compile Parameters Initialization = 1
General Linear Constraints = 0	OnParamChangeScriptsEnabled = 0.

Simulation of Coupling constant from $\chi_M T$ vs. T curve using software Magpack ¹(ring model of chain compound considering magnetic anisotropy):

Scheme S1. The ring-model of the chain compounds to calculate the coupling constant using the software Magpack. ¹

The Spin Hamiltonian Equation of ring-model of the chain compound (Scheme S1) as follows :

Fig S4 The best fit of $\chi_{\rm M}T$ vs. *T* curve using software Magpack ¹ (the black square is the experimental $\chi_{\rm M}T$ vs. *T* curve and the red solid line is the best fit by the ring-model of chain compound)

The input files of parani21	PARAMETER (IDTOT = 1703636) !
PARAMETER (NUM=12) ! number	dimension of full energy matrix
of centers (<=14)	PARAMETER (IDTOTF= 1) ! [If
С	IEIG=2 then IDTOTF=IDTOT; else =1]
	C

PARAMETER (IUNI=2) ! units (1=K, 2=meV, 3=cm-1) С PARAMETER (IISO=1) ! isotropic exchange [1(yes)/0(no)]С PARAMETER (IANL=1) ! local anisotropy [1(yes)/0(no)] C (IANI=0) PARAMETER ! anisotropic exchange [1(yes)/0(no)]С PARAMETER (ISUS=1) ! Magnetic susceptibility С PARAMETER (ICAL=0) ! Specific heat С PARAMETER (IMAG=1)! Magnetization С PARAMETER (ISPI=0) ! write the base functions [1(yes)/0(no)] С PARAMETER (IEIG=0) ! write eigenvalues С [no(0)/yes(1)/yes+eigenvect(2)] С С C---_____ C* The following parameter is defined to minimize underflow problems PARAMETER (EPS = 1.D-12) The input files of parani22 C** SPIN OF EACH CENTER. ISN(I)=2S; I<=14 С ISN(1) = 3ISN(2) = 3ISN(3) = 3ISN(4) = 3ISN(5) = 3ISN(6) = 3ISN(7) = 3

ISN(8) = 3ISN(9) = 3ISN(10) = 3ISN(11) = 3ISN(12) = 3ISN(13) = 0ISN(14) = 0С C**** NON ZERO EXCHANGE PARAMETERS BETWEEN CENTERS I AND J (I<J) C** ISOTROPIC EXCHANGE PARAMETERS: CONEX(I,J,1) = KС CONEX(1,2,1) = 0.15D0CONEX(2,3,1) = 6.150D0CONEX(3,4,1) = 0.15D0CONEX(4,5,1) = 0.100D0CONEX(5,6,1) = 0.15D0CONEX(6,7,1) = 6.150D0CONEX(7,8,1) = 0.15D0CONEX(8,9,1) = 0.100D0CONEX(9,10,1)= 0.15D0 CONEX(10,11,1)= 6.150D0 CONEX(11,12,1) = 0.150D0CONEX(12,1,1) = 0.10D0С C** BIQUADRATIC EXCHANGE PARAMETERS: CONEX(I,J,2) = KС CONEX(1,2,2) = 0.0D0С C** ANISOTROPIC EXCHANGE **PARAMETERS**: CONEX (I,J,3)=JX, CONEX С (I,J,4)=JY, CONEX (I,J,5)=JZС CONEX(1,2,3) = -0.10D0CONEX(2,3,3) = -0.1D0CONEX(3,4,3) = -0.10D0CONEX(1,2,4) = -0.10D0CONEX(2,3,4) = -0.1D0

```
CONEX(3,4,4) = -0.10D0
                                             GZ(5) = 2.70d0
     CONEX(1,2,5) = 0.10D0
                                             GX(6) = 0.0d0
     CONEX(2,3,5) = 0.10D0
                                             GY(6) = GX(2)
     CONEX(3,4,5) = 0.10D0
                                             GZ(6) = 3.7d0
 С
                                             GX(7) = 0.0d0
 C**
           LOCAL
                     ANISOTROPIC
                                             GY(7) = GX(3)
PARAMETERS:
                                             GZ(7) = 3.7d0
 С
                                             GX(8) = 0.0d0
     ANILOD(1) = -0.0100D0
                                             GY(8) = GX(4)
     ANILOD(2) = -0.5200D0
                                             GZ(8) = 2.7d0
     ANILOD(3) = -0.5200D0
                                             GX(9) = 0.0d0
     ANILOD(4) = -0.010D0
                                             GY(9) = GX(1)
     ANILOD(5) = -0.0100D0
                                             GZ(9) = 2.70d0
     ANILOD(6) = -0.5200D0
                                             GX(10) = 0.0d0
     ANILOD(7) = -0.5200D0
                                             GY(10) = GX(2)
     ANILOD(8) = -0.010D0
                                             GZ(10) = 3.7d0
     ANILOD(9) = -0.0100D0
                                             GX(11) = 0.0d0
     ANILOD(10) = -0.5200D0
                                             GY(11) = GX(3)
     ANILOD(11) = -0.5200D0
                                             GZ(11) = 3.7d0
     ANILOD(12) = -0.010D0
                                             GX(12) = 0.0d0
 С
                                             GY(12) = GX(4)
     ANILOE(1) = 0.00D0
                                             GZ(12) = 2.7d0
     ANILOE(2) = 0.00D0
     ANILOE(3) = 0.00D0
                                          С
     ANILOE(4) = 0.00D0
                                          С
 С
                                          C**
                                                          MAGNETIZATION
 C** A-3) G PARAMETERS (GX=GY)
                                        PARAMETERS
 С
                                          С
                                          С
                                               ANGLE STEP TO INTEGRATE
    GX(1) = 0.0d0
                                        OVER ALL DIRECCTONS (DEG)
     GY(1) = GX(1)
                                             IANG = 50
     GZ(1) = 2.70d0
                                          С
     GX(2) = 0.0d0
                                          С
                                                   MAXIMUM VALUE OF
     GY(2) = GX(2)
                                        MAGNETIC FIELD (ICAMMAX/100
     GZ(2) = 3.7d0
                                        TESLAS)
     GX(3) = 0.0d0
                                             ICAMMAX = 500
     GY(3) = GX(3)
                                          С
     GZ(3) = 3.7d0
                                          С
                                              STEP IN MAGNETIC FIELD TO
     GX(4) = 0.0d0
                                        PLOT M VS H (ICAMSTP/100 TESLAS)
     GY(4) = GX(4)
                                             ICAMSTP = 20
     GZ(4) = 2.7d0
                                          С
     GX(5) = 0.0d0
                                          C TEMPERATURE (K)
     GY(5) = GX(1)
                                             TEMP = 2.0D0
```

```
С
 С
 С
                                     C FINAL TEMPERATURE (K)
           SHOW
                  0=AVERAGED.
PAPALLEL AND PERPENDICULAR
                                        TEMP2 = 300.0D0
MAGNETIZATION
                                     С
 С
          1=AVERAGED AND ALL
                                     C NUMBER OF POINTS
CALCULATED CONTRIBUTIONS
                                        ISTEPTEMP = 100
    ISHOW = 1
                                     С
 С
                                     С
                                        MAGNETIC FIELD (CAMPO/100
 С
                                   TESLAS)
 C** SUSCEPTIBILITY
                                        CAMPO = 10.D0
 С
 C INITIAL TEMPERATURE (K)
    TEMP1
            = 2.0D0
```

DFT calculations on the magnetic coupling constants.

To estimate the exchange coupling constants between the Co²⁺ ions, calculations based on the density function theory integrating with the broken-symmetry approach (BS)^{2, 3} were carried out for **1**. The initial structure was the periodic model of two tetramers in one lattice unit cell (Fig. S5) extracted from cif file. The exchange coupling constants *J* (Table S2) have been evaluated by calculating the energy difference between the high-spin state (E_{HS}) and the broken symmetry state (E_{BS}). The phenomenological spin Hamiltonian is defined as: $H = -2JS_1 S_2$. Based on this spin Hamiltonian, the coupling constant *J* can be extracted from the following equation: *J* = ($E_{BS}-E_{HS}$)/($4S_1S_2+2S_2$). For our system, $S_1 = S_2 = 3/2$, thus, $J = (E_{BS}-E_{HS})/12$.

Fig. S5. The spin configurations of the two tetramers in one lattice unit cell, the direction of the arrows representing the spin orientation: a) all the spins up in the

high-spin state (HS); b) only the spin of Co5 down in the first broken-symmetry state (BS1); c) only the spin of Co4 down in the second broken-symmetry state (BS2); d) only the spin of Co2 and Co6 down in the third broken-symmetry state (BS3), .

All calculations (including optimizations and energy evaluations) were performed on the Quantum Espresso package (QE) Version 6.5,^{4, 5} using the PBE+*U*+D3 ⁶scheme with U = 2.29 eV for the d orbitals of cobalt referring to iron.⁷ The spin unrestricted formalism, the D3 correction of Grimme, Vanderbilt pseudopotentials,⁸ and a Γ -point sampling of the Brillouin zone was set up. The computation of HS and BS state was performed by successive variable-cell geometry relaxations (vc-relax) at the solid-state until the minima were obtained. The lattice parameters and the atomic positions are optimized simultaneously. The convergence criterion was set at atomic forces smaller than 1×10^{-5} atomic units. In these calculations, the number of plane waves was kept constant at a kinetic energy cutoff of 70 and 560 Ry for ecutwfc and ecutrho, respectively. This large cutoff ensures that artifacts originated in the change of unit-cell volume (i.e., Pulay stress) are negligible. The spin state of the cobalt atoms is set by defining an appropriate initial guess (HS or BS) that is maintained along the optimization. The final unit cell parameters and coordinates are provided in Computational Data file.

	E(Ry)	$\Delta E (\text{cm}^{-1})^a$	$\Delta E/12(\text{cm}^{-1})$	Coupling strength(cm ⁻¹)
HS	-4090.775981			
BS1	-4090.793857	-1962.80 (Δ <i>E</i> ₁)	-163.57	J_1+J_3
BS2	-4090.787867	-1305.10 (Δ <i>E</i> ₂)	-108.76	$J_1 + J_2 + J_3$
BS3	-4090.787536	-1268.80 (Δ <i>E</i> ₃)	-105.73	J_2+2J_3
$J_1 = -83.30, J_2 = 54.81, J_3 = -80.27$				

Table S2. DFT calculation results for the molecules in one unit cell

 $^{a}\Delta E = E_{\text{BS}} - E_{\text{HS, KJ/mol}} = \text{Ry}/2*627.51*4.184; \text{ cm}^{-1} = \frac{1}{\text{KJ/mol}} - \frac{1}{(6.02*10^{-23})} - \frac{1}{(1.986*10^{-23})} + 1000$

First of all, here it should be emphasized that we do not know what is the proper U values for the cobalt in this magnetic system and there is no report involving this value. Therefore, we have to choose the U values from iron.⁷ Although the U values influent the energy difference between the HS and BS state, the change is almost linear and below 10 KJ/mol (836 cm⁻¹) per 0.2 eV of U (Fig. S6.). It is presumed that change value is x cm⁻¹. We found that the selection of U values will not impact J_2 ,

$$J_2 = (J_1 + J_2 + J_3) - (J_1 + J_3) = (\Delta E_2 + x) - (\Delta E_1 + x) = \Delta E_2 - \Delta E_1$$

However, the J_1 and J_3 will be impacted by the half of x:

$$J_{3} = [(J_{2}+2J_{3}) - J_{2}]/2 = [(\Delta E_{3}+x) - J_{2}]/2 = (\Delta E_{3}-\Delta E_{2}+\Delta E_{1})/2 + x/2$$
$$J_{1} = (J_{1}+J_{3}) - J_{3} = (\Delta E_{1}+x) - [(\Delta E_{3}-\Delta E_{2}+\Delta E_{1})/2 + x/2] = [(-\Delta E_{3}+\Delta E_{2}+\Delta E_{1})/2 + x/2]$$

Perhaps, the calculations are not accurate, but at least we can confirm qualitatively the exchange coupling constants between the Co^{2+} ions.

Fig. S6. Evolution of ΔH_{elec} with U for (left) Fe^{II} and (right) Fe^{III} compounds (copied from ref. ⁷).

Secondly, we need to emphasize that the calculated magnetic interactions transferred by the three types of bridge here represent only an approximation of the magnetic interactions between the Co²⁺ centers. Several other possible contributions to the overall interactions, such as the nearest magnetic interactions, dipole-dipole interactions, and magnetic interactions transferred through the hydrogen bonds, are included into the covalent bridge interactions. Also, we don't consider the contribution of the orbital-spin coupling.

Fig. S7 Isothermal field-dependence of the magnetization per Co2 at multiple temperatures for **1**. The solid lines are the best fits by the software Magpack at each temperature. The parameters for the best fit are $J_1 = +0.10$ cm⁻¹; $J_2 = +11.15$ cm⁻¹; $J_3 =$

+0.10 cm⁻¹;
$$J_x = J_y = -8.10$$
 cm⁻¹; $J_z = 1.50$ cm⁻¹; $D_1 = -0.01$; $D_2 = -6.52$; $E_1 = -0.01$; $E_2 = -0.10$; $g_1 = 2.4$; $g_2 = 3.4$.

Dynamic magnetic properties

Table S3 The α values from the fitting of the Cole-Cole plots of 1

1	<i>T</i> /K	2	2.5	3	3.5	4	4.5
	α	0.48	0.48	0.47	0.43	0.31	0.17

References

- 1 J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Coronado and B. S. Tsukerblat, *J. Comput. Chem.*, 2001, **22**, 985-991.
- 2 E. Ruiz, A. Rodríguez-Fortea, J. Cano, S. Alvarez and P. Alemany, *J. Comput. Chem.*, 2003, **24**, 982-989.
- 3 E. Ruiz, J. Cano, S. Alvarez and P. Alemany, *J. Comput. Chem.*, 1999, **20**, 1391-1400.
- 4 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, *J. Phys.: Condens. Matter*, 2017, **29**.
- 5 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, *J. Phys.: Condens. Matter*, 2009, **21**.
- 6 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- 7 S. Vela, M. Fumanal, J. Cirera and J. Ribas-Arino, *Phys. Chem. Chem. Phys.*, 2020, **22**, 4938-4945.

8 J. M. Holland, S. A. Barrett, C. A. Kilner and M. A. Halcrow, *Inorg. Chem. Commun.*, 2002, **5**, 328-332.