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S1. Layer de-Convolution Williamson-Hall method (LdCWH)

S.1.1. Theoretical background and uncertainties determination

-scans consist in scans through an ellipsoidal-arc in the reciprocal space, while keeping the 
detector fixed. 2- scans, on the other hand, correspond to a cut in the reciprocal space 
connecting (Qx,Qz) coordinate of the Bragg peak centroid with the origin of the reciprocal space 
(Qx,Qz)=(0,0). In the particular case of symmetrical reflections, the Bragg angular position 
corresponds to B=2B/2. -scans are sensitive to the coherence length parallel to the substrate 
surface (L||) and to the tilt angle ( ) while 2- scans are sensitive to the coherence length 𝛼θ

perpendicular to the substrate surface ( ) and to the heterogeneous strain ( ) also 𝐿 ⊥ 𝜀 ⊥

perpendicular to the substrate surface. Analytically, the coherence length parallel 
(perpendicular) to the substrate surface and the tilt angle (heterogeneous strain) are given by 
Eqs. S.1a) and b), respectively1,2:

𝐿 ∥ ( ⊥ ) =
0,9 ∙ 𝜆

𝛽𝜃(2𝜃 ‒ 𝜔)[0.017475 + 1.500484 ∙ 𝑎3 - 0.534156 ∙ 𝑎2
3] ∙ 𝑠𝑖𝑛(𝑐𝑜𝑠)(𝜃𝐵(000𝑙))

⇔

𝐿 ∥ ( ⊥ ) =
0.9 ∙ 𝜆

𝛽𝜃(2𝜃 ‒ 𝜔) ∙ 𝜇 ∙ 𝑠𝑖𝑛(𝑐𝑜𝑠)(𝜃𝐵(000𝑙))

Eq. 
S.1a)

𝛼θ(𝜀 ⊥ )

=
𝛽𝜃(2𝜃 ‒ 𝜔)[0.184446 + 0.812692 ∙ (1 - 0.998497 ∙ 𝑎3)

1
2 - 0.659603 ∙ 𝑎3 + 0.445542 ∙ 𝑎2

3]
(4𝑡𝑎𝑛(𝜃𝐵))

⇔𝛼θ

(𝜀 ⊥ ) = 𝛽𝜃(2𝜃 ‒ 𝜔) ∙ 𝜌

Eq. 
S.1b)

𝛽𝜃(2𝜃 ‒ 𝜔) = (𝑎3 ∙ 𝜋 + (1 ‒ 𝑎3) 𝜋 ∙ 𝑙𝑛(2)) ∙
𝐹𝑊𝐻𝑀

2
Eq. 

S.1c)

𝐼(𝜃(2𝜃 ‒ 𝜔)) = 𝑎0 × [(1 ‒ 𝑎3) × 𝑒𝑥𝑝( ‒ 𝑙𝑜𝑔(2) × (𝜃(2𝜃) ‒ 𝑎1

𝑎2
)2) +

𝑎3

1 + (𝜃(2𝜃) ‒ 𝑎1

𝑎2
)2] Eq. 

S.1d)

 refers to parallel (perpendicular) coherence length,  to  or 2- scan integral 𝐿 ∥ ( ⊥ ) 𝛽𝜃(2𝜃 ‒ 𝜔)

breadth (Eq. S.1c) and generically defined as the ratio between the peak area and peak 
maximum3 and  to the tilt angle (heterogeneous strain), respectively. Moreover, for the 𝛼θ(𝜀 ⊥ )

case of the heterogeneous strain it increases proportionally to .  is the Cu  X-1/(4𝑡𝑎𝑛(𝜃𝐵)) 𝑘𝛼1

ray wavelength (1.54056 Å), B is the Bragg angle and (000l) is the measured reflection.  and  𝜇 𝜌
compress the polynomials in brackets, which are functions of the Lorentzian fraction, a3. a2 is 
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the Gaussian width which is half of the FWHM, a1 is the PV center, a0 is the intensity maximum 
and I((2-)) represents the intensity for given incident angle, (2). The Pseudo-Voigt 𝜃
definition used in this work is defined in Eq. S.1d). With respect of Eq. S1.d) special attention is 
needed because it is an approximation valid for low backgrounds and single peaks. 
Mathematically, if the coefficients of three PVs are independent, then, based on the central limit 
theorem, the sum of three PVs is still a PV. On the other hand, the sum of the  using Eq. 𝛽𝜃(2𝜃 ‒ 𝜔)

S.1d) only approximates the integral breadth definition - ratio between the peak area and peak 
maximum - if the background of the measured curve can be neglected compared to the 
maximum intensity. In fact, all measured curves were simulated with low backgrounds due to 
the fact that measurements were performed in high-resolution mode. Moreover, if 

, which is true by definition (PV(i=1) is the Pseudo-Voigt function 𝛽𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑒𝑎𝑘
𝜃(2𝜃 ‒ 𝜔) > 𝛽 𝑃𝑉1

𝜃(2𝜃 ‒ 𝜔)

that characterizes the major slab and  is the integral breadth of the total measured 𝛽𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑒𝑎𝑘
𝜃(2𝜃 ‒ 𝜔)

curve), then , which characterizes the remaining layers integral breadths can be de-𝛽𝑃𝑉𝑖 (𝑖 = 2,3)
𝜃(2𝜃 ‒ 𝜔)

convoluted in several different ways not limiting the usage of Eq. S.1c) to obtain the integral 
breadth for the thicker slab. The distribution of the intensities among the other two layers can be 
calculated to fulfill the condition of having the summation of the partial  to approximate 𝛽𝜃(2𝜃 ‒ 𝜔)

with the integral breadth definition for the total asymmetric peak. To conclude, due to the fact 
that LdCWH method is directly applied only to the thicker slab in this manuscript, in fact a 
possible quantification of the corresponding integral breadth is, indeed, the one found using Eq. 
S1.c). To obtain the uncertainties of L|| and , an understanding of the FWHM, Gaussian width 𝛼θ

and integral breadth relations are fundamental due to the fact that, according to Eq. S.1a) to 
S.1c), these are independent quantities. Figures S.1a) and b) show the evolution of the  and  
(terms in brackets from Eq S.1a) and S.1b)) plotted together with the integral breadth for the 
FWHMs of 0.01 , 0.1  and 0.25  as functions of a3 coefficient of the PV. It is verified that the 
integral breadth is a linear increasing function of a3 coefficient of the PV and that the terms  𝜌
and  from equations S.1a) and S.1b) decrease and increase with a3, respectively. Moreover, the 𝜇

increase in  and  is higher than   and  for FWHMs of 0.01º, 0.1º and 

∂𝜌
∂𝑎3

∂𝜇
∂𝑎3

∂𝛽𝜃(2𝜃 ‒ 𝜔)

∂𝑎3

∂𝛽𝜃(2𝜃 ‒ 𝜔)

∂𝑎3

0.25º, the typical FWHMs in the case of nitride compounds. These differences imply that, in the 
case of figure S.1b), the decrease/increase of component a3 from the PV forces the product of 

 to increase/decrease, thereby increasing/decreasing the crystallites tilt angle. Nevertheless, 𝛽𝜃 ∙ 𝜌

in the particular case of a3=0, i. e., a pure Gaussian,  is maximized, thus, so is the tilt angle. On 𝜌
the other hand, if a3 is 1, corresponding to a pure Lorentzian,  is maximum (close to unity), 𝜇
therefore, L|| matches its minimum (figure S.1b).  



Figure S1 Evolution of the terms ρ (a), and μ (b) from Eq. S.1a) and S.1b), as functions of a3 
component of the Pseudo Voigt. Likewise, integral breadths for three different FWHM (0.01º, 
0.1º and 0.25º) as functions of a3 component of the PV are shown. The selected choices for the 
FWHM correspond to the typical FWHM found in the AlGaN compounds.  

The uncertainties of L|| and  are, then, found through the propagation of errors and using the 𝛼𝜃

uncertainties derived for each 0002, 0004 and 0006 -scans Pseudo-Voigt fittings. With respect 
to L|| the highest uncertainty is due to the error at the a3 coefficient of the Pseudo-Voigt fitting. 

 is approximately three orders of magnitude greater than the uncertainty at the (∂𝐿 ∥

∂𝑎3
⋅ Δ𝑎3)2 ≡ 𝐼1

FWHM, . Furthermore, the uncertainties at the Pseudo-Voigt center ( ∂𝐿 ∥

∂𝐹𝑊𝐻𝑀
⋅ Δ𝐹𝑊𝐻𝑀)2 ≡ 𝐼2

and X-ray wavelength can be neglected compared to I1 an I2, respectively. Related to the 

crystallites tilt angle, the only independent quantities are a3 and FWHM. is two 𝛼𝜃, (∂𝛼𝜃

∂𝑎3
⋅ Δ𝑎3)2

orders of magnitude greater than . On the other hand, the y-axis at the ( ∂𝛼𝜃

∂𝐹𝑊𝐻𝑀
⋅ Δ𝐹𝑊𝐻𝑀)2

standard WH plot is given by the product between the scattering vector length, sin()/, and the 
integral breadth, . Basically, the WH plot relies on the principle that size broadening parallel 𝛽𝜃

component ( ), and perpendicular component ( ), tilt angle ( ) and strain 

𝐾𝜆
𝐿||𝑠𝑖𝑛(𝜃𝐵)

𝐾𝜆
𝐿 ⊥ 𝑠𝑖𝑛(𝜃𝐵) 𝛽𝜃

broadening ( ) as functions of the Bragg angle varies significantly. K is considered to 𝐶𝜀𝑡𝑎𝑛(𝜃𝐵)
be 0.9 in this work and C=4. Assuming the sum of size and strain broadenings in the total 

broadening results in  and , where  

𝛽𝜃𝑠𝑖𝑛(𝜃𝐵)
𝜆

=
0.9

2𝑦𝜔
0

+ 𝑚𝜔
𝛽𝜃𝑐𝑜𝑠(𝜃𝐵)

𝜆
=

0.9

2𝑦2𝜃 ‒ 𝜔
0

+ 𝑚2𝜃 ‒ 𝜔

) is the y-intercept and  is the slope for the  and 2- scans, 𝑦𝑖
0(𝑖 = 𝜔, 2𝜃 ‒ 𝜔 𝑚𝑖(𝑖 = 𝜔,2𝜃 ‒ 𝜔)

respectively. The uncertainties derived in the case of the standard Williamson-Hall method are 
given by:

Δ𝑦𝛽𝜃(𝐹𝑊𝐻𝑀)
= (𝑠𝑖𝑛(𝜃𝐵)

𝜆
Δ𝛽𝜃(𝐹𝑊𝐻𝑀))2 + (𝛽𝜃(𝐹𝑊𝐻𝑀)𝑐𝑜𝑠(𝜃𝐵)

𝜆
Δ𝜃𝐵)2 Eq. S.1.2

where the values in brackets to use correspond to the integral breadth ( ) or FWHM, 𝛽𝜃

respectively.  is the uncertainty of integral breadth (FWHM). The uncertainty at  Δ𝛽𝜃(𝐹𝑊𝐻𝑀) 𝛽𝜃

is calculated applying the propagation of errors to Eq. S.1c). FWHM and  are the ∆ ∆𝑎3

uncertainties at the FWHM and at the Lorentzian fraction and are determined directly via the 

PV fitting. The uncertainty  is around one order of magnitude greater than ( ∂𝛽𝜃

∂𝐹𝑊𝐻𝑀
⋅ Δ𝐹𝑊𝐻𝑀)2

.  is the uncertainty of the Bragg peak center, i. e., the a1 coefficient of PV1. (∂𝛽𝜃

∂𝑎3
⋅ Δ𝑎3)2

Δ𝜃𝐵



S2. Procedure to speed up LdCWH fitting convergence

A method to accelerate the convergence for linearity is described. It starts with the independent 
fitting of the lower Miller index reflection using three PVs. By “independent” fitting depicted as 
step I on the flowchart (figure 2 of manuscript), the authors mean that reflection 0002 is fitted 
without any concern about the remaining ones. The 0002 -scan Pseudo Voigt 1 (PV1) is 
defined according to its a0 (intensity), a1 (center), a2 (Gaussian width) and a3 (Lorentzian 
fraction) coefficients, and then PV2 and PV3 are included in the simulations as appropriate. The 
a3 components of PV2 and PV3 are calculated in a way that  is the closest to the one derived 𝐿 ∥

for the 0002 -scans: first, steps of 0.01 in a3 are given as input in Eq. S.1a) and L|| derived for 
0004 and 0006 are calculated. In this case, as shown in figure 4a), #iteration 3 is found for both 
reflections which translates into a3 0004 of 0.09 and 0.23 for a3 0006 from the given starting a3. 
This is the evidence that the size effect broadening in the reciprocal space is independent of the 
scattering vector length as it is possible to obtain similar L|| independently of the reflection. The 
straight line in figure S2.1a) corresponds to the  derived for 0002. On the other hand, it is not 𝐿 ∥

possible to calculate a3 in a way that  derived for 0004 and 0006 is close to the one derived 
for 0002 as concluded from figures S2.1c) and S2.1d). The horizontal line corresponds to the  
derived for 0002. Although iterations #164 and #169 are rejected based on the fact that, by 
definition, 0  a3  1, there isn’t any possible iteration that matches the horizontal line in figure 
S.2.1c) with any of the curves derived for incremental a3 in the case of  using Eq. S.2.1b) for 
0004 and 0006, simultaneously. The procedure, represented in figures 4a-d), enables to speed up 
the fitting convergence process. 



Figure S2 a) Comparison between the theoretical L|| determined using steps of 0.01 in a3 
(Lorentzian fraction) for the 0004 and 0006 with the 0002 derived L|| (horizontal line). Iteration 
#3 corresponds to the intersection between the derived lateral coherence lengths for the three 
reflections. b) Determination of the corresponding a3 for 0004 and 0006 which outputs the 
closest possible L|| determined for 0002. c-d) Same as for a-b) but with respect to the . 
Iteration #63 matches derived 0006 and 0002  which corresponds to a3 0006=0.61 but there 
isn’t any possible combination within 0  a3  1 for matching derived 0002 and 0004 . 
Shadowed area in d) corresponds to not allowed a3 range because, by definition, 0  a3  1. 

S3. Multiple Reflection optimization package for X-ray diffraction

Figure S3 a-c) show experimental 2- around the , and  -MoO3 Bragg peaks 022̅0 044̅0 066̅0
and respective simulations using the dynamical theory of X-ray diffraction. 

Figure S3 a-c) Experimental and simulation of the 2- scans around the vicinity of the , 022̅0

and  -MoO3 Bragg peaks. The simultaneous simulations and fittings were 044̅0 066̅0

accomplished using the MROX code4-6. d) Schematics of the top -MoO3 surface layers with the 
corresponding layer thickness, deformation perpendicular to the sample surface and crystalline 
quality.



All software was developed under Matlab® Graphical User Interface Development 
Environment (GUIDE). LdCWH software is available via email upon request.
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