ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Supporting Information

Room-Temperature Synthesis, Growth Mechanisms and Optical Properties of Organic-Inorganic Halide Perovskite CH₃NH₃PbX₃ (X= I, Br and Cl) Single Crystals

Maryam Bari^a, Hua Wu^{b,a}, Alexei A. Bokov^a, Rana Faryad Ali^a, Hamel N. Tailor^a, Byron D. Gates^a, and Zuo-Guang Ye^{a*}

^{a.} Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.

^{b.} Department of Applied Physics, Donghua University, Songjiang, Shanghai, 201620, China.

^{*}Corresponding Author. E-mail: zye@sfu.ca

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

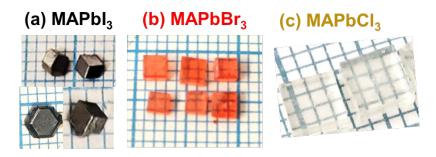
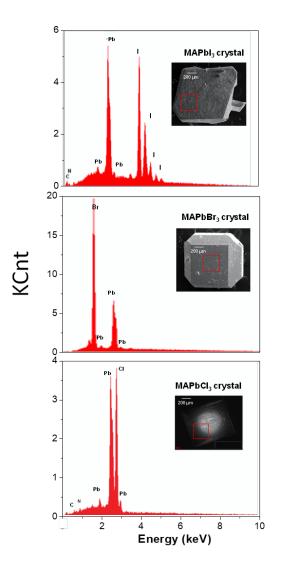
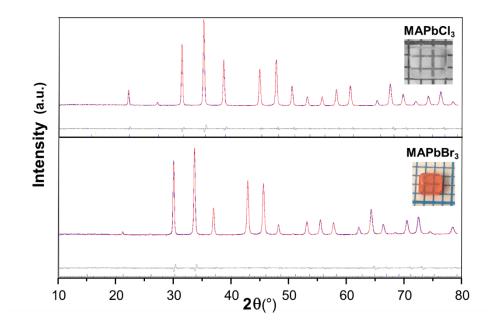
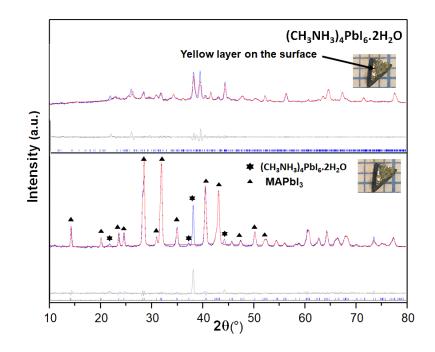


Figure S1. Optical images of the MAPbX₃ (X= I, Br, Cl) crystals grown by room temperature crystallization (RTC).

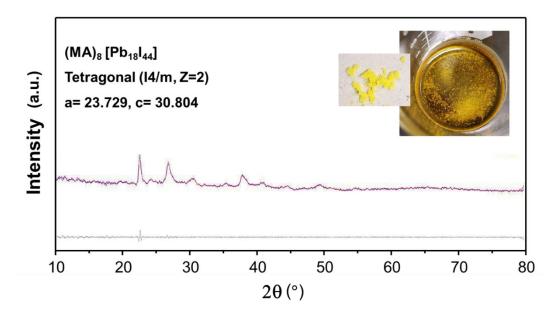

Figure S2. Energy dispersive X-ray spectroscopy (EDX) analyses of the MAPbX₃ crystals grown by RTC.

Figure S3. Stability study of the halide perovskite crystals grown by RTC and stored in ambient condition for two years: PXRD patterns of MAPbX₃ (X= Br and Cl) (blue line), the Pawley refinement (red line) with a profile residual factor R_{wp} = 0.50 for both compounds, and the difference (grey line on the bottom of the panel).

Figure S4. Stability study of the MAPbI₃ crystals grown by RTC and stored in ambient condition for one year. Bottom: PXRD pattern of an as-grown MAPbI₃ crystal containing a yellow layer formed on the crystal surface (blue line), the Pawley refinement (red line) with the profile residual factor $R_{wp} = 1.50$ for MAPbI₃. Top: PXRD pattern of the yellow compound scratched out from the grown crystal, which matches the PXRD of (CH₃NH₃)₄PbI₆.2H₂O with a $R_{wp} = 0.50$, as previously reported.^{1,2}

Figure S5. Powder XRD pattern of the yellow crystals obtained from 1 M solution of MAPbI₃ in GBL, which was saturated at 60 °C and cooled down to room temperature (blue line), and the Pawley refinement (red line) with the profile residual factor $R_{wp} = 0.35$ for (MA)₈[Pb₁₈I₄₄] intermediate adduct.³

Calculation of the Nucleation Parameters from Interfacial Energy

Based on the homogeneous nucleation theory,⁴ the change in Gibbs free energy (ΔG) for the formation of spherical nuclei can be calculated by the following equation:

$$\Delta G = -\frac{4}{3}\pi r^3 \left| \Delta G_v \right| + 4\pi r^2 \sigma, \tag{S1}$$

where σ is the interfacial energy, r is the nucleus radius and ΔG_{ν} represents the volume free energy, which can be expressed as:

$$\Delta G_{\nu} = -\left(\frac{K_B T \ln S_r}{\nu}\right),\tag{S2}$$

where *v* is the specific volume of solute, *T* is the temperature, *S_r* is the supersaturation ratio and *k_B* is the Boltzmann constant. Based on Eqs. (S1) and (S2), the critical nucleus radius $r_c = -\frac{2\sigma}{\Delta G_v}$ and the critical free energy barrier (ΔG_c) can be determined using the following relations:

4 | J. Name., 20xx, 00, 1-3

Journal Name

$$\frac{d(\Delta G)}{dr} = -4\pi r_c^2 \left| \Delta G_v \right| + 8\pi r_c \sigma = 0, \tag{S3}$$

$$\Delta G_c = \frac{16\pi\sigma^3 v^2}{3k_B^2 T^2 (\ln S_r)^2}$$
(S4)

According to the above equations, the nucleation parameters such as critical radius of nuclei (r_c), Gibbs free energy per volume unit (ΔG_v), and critical free energy barrier (ΔG_c) have been calculated and the results are listed in Table 1. Figure S6 shows the critical radii of the grown MAPbCl₃ crystals as a function of supersaturation ratio at 25 °C and 110 °C.

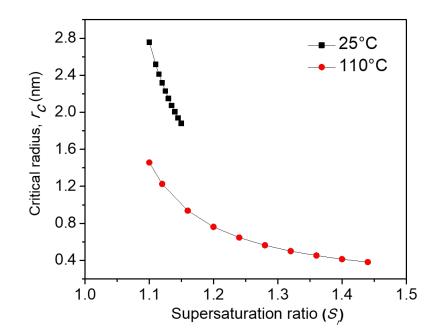
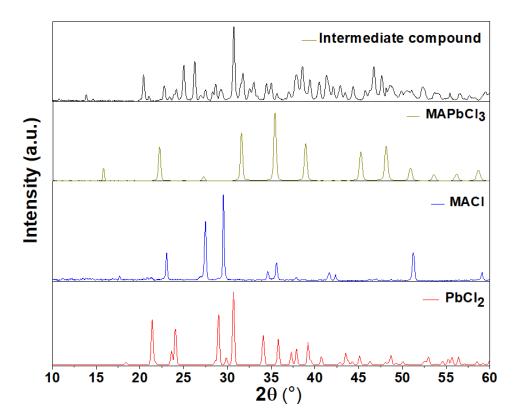



Figure S6. Critical radii as a function of the supersaturation ratio for the growth of MAPbCl₃ crystals at 25 °C and 110 °C.

Journal Name

Figure S7. PXRD pattern of the intermediate compound formed during RTC, shown together with the patterns of pure MAPbCl₃ and the precursors (MACl and PbCl₂) as reference.

Figure S8. Optical micrographic images of the (001)-oriented $CH_3NH_3PbX_3$ crystals: (a) $CH_3NH_3PbCl_3$ crystal prepared via the seeded ITC; and (b) $CH_3NH_3PbCl_3$ and (c) $CH_3NH_3PbBr_3$ crystals prepared via RTC. Photographs of a-c were taken by transmitted PLM. (d) $CH_3NH_3Pbl_3$ crystal via RTC, as observed by the reflected-PLM. Scale bars: 1 mm.

Journal Name

Table S1. The fluorescence decay time of the old and fresh MAPbBr₃ and MAPbI₃ crystals acquired with a time-correlated single-photon counting (TCSPC) setup using an excitation wavelength of 370 nm.^{*}

Compound	PL lifetime (τ ₁) ns	τ1 contribution to PL	PL lifetime (τ₂) ns	τ₂ contribution to PL	PL lifetime (τ₃) ns	τ₃ contribution to PL	PL lifetime (τ₄) ns	τ4 contribution to PL
MAPbBr ₃ (Old crystal)	0.2	11.5%	2.75	12.3%	22.6	28%	115.0	48.15%
MAPbBr ₃ (Fresh crystal)	0.35	10 %	6.31	13%	47.4	28 %	153.3	49 %
MAPbI ₃ (Old crystal)	0.12	15.06 %	2.40	16.82%	12.4	31.82 %	111.0	36.31 %
MAPbI ₃ (Fresh crystal)	0.15	15 %	3.20	17%	14.0	32 %	117	36 %

* The photoluminescence (PL) plots were fitted with a four-exponential decay.

References

1 X. Guo, C. McCleese, C. Kolodziej, A. C. Samia, Y. Zhao, C. Burda, Dalton Trans. 2016, 45, 3806-3813.

2 J. A. Christians, P. A. Miranda Herrera, P. V. Kamat, J. Am. Chem. Soc. 2015, 137, 1530-1538.

3 S. A. Fateev, A. A. Petrov, V. N. Khrustalev, P. V. Dorovatovskii, Y. V. Zubavichus, E. A. Goodilin, A. B. Tarasov, *Chem. Mater.* **2018**, 30, 5237–5244.

4 D. Elwell, H. J. Scheel, Crystal Growth from High-Temperature Solutions, Academic Press Inc, London - New York 1975.