Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

> **Structure-property correlations in piracetam polytypes** Pratik P. Upadhyay, Manish Kumar Mishra, Upadrasta Ramamurty, Andrew D. Bond Electronic Supplementary Information

Structure-property correlations in piracetam polytypes

Pratik P. Upadhyay, Manish Kumar Mishra, Upadrasta Ramamurty and Andrew D. Bond*

*E-mail: adb29@cam.ac.uk

S1. Comparison of experimental and simulated PXRD patterns for piracetam bulk phases

S2. PIXEL calculations: FII (CSD: BISMEV11, space group P-1, transformed using the matrix [100,0-10,00-1])

 Unit cell:
 a = 6.353, b = 6.528, c = 8.372 Å, alpha = 80.30, beta = 101.77, gamma = 90.95°

 Symmetry operators:
 [1]
 x, y, z
 [2]
 -x, -y, -z

Shaded rows indicate interactions between polytypic layers. Only interactions with magnitude > 3 kJ mol⁻¹ are listed.

Mol 1 ARU	Mol 2 ARU	Mol 1 Operator	Mol 2 Operator	Distance	Coulomb	Polarisation	Dispersion	Repulsion	Total
1_555_01	2_456_01	х,у,z	-1-x,-y,1-z	7.856	-98.5	-34.0	-20.0	90.4	-62.2
1_555_01	1_655_01	х,у,z	1+x,y,z	6.353	-47.5	-16.4	-21.3	43.5	-41.6
1_555_01	1_455_01	х,у,z	-1+x,y,z	6.353	-47.5	-16.4	-21.3	43.5	-41.6
1_555_01	2_567_01	х,у,z	-x,1-y,2-z	4.698	-16.7	-7.5	-34.5	28.9	-29.8
1_555_01	2_557_01	х,у,z	-x,-y,2-z	6.288	-28.0	-9.8	-12.2	21.0	-29.1
1_555_01	2_566_01	х,у,z	-x,1-y,1-z	5.120	-17.6	-7.7	-21.1	19.0	-27.4
1_555_01	2_466_01	х,у,z	-1-x,1-y,1-z	5.216	-4.6	-2.8	-18.3	9.6	-16.1
1_555_01	1_545_01	х,у,z	x,-1+y,z	6.528	-4.4	-3.6	-14.5	11.6	-10.9
1_555_01	1_565_01	х,у,z	x,1+y,z	6.528	-4.4	-3.6	-14.5	11.6	-10.9
1_555_01	2_457_01	х,у,z	-1-x,-y,2-z	7.801	-2.2	-1.6	-5.0	0.7	-8.2
1_555_01	2_667_01	х,у,z	1-x,1-y,2-z	8.949	-3.7	-0.5	-1.5	0.0	-5.7
1_555_01	1_645_01	х,у,z	1+x,-1+y,z	9.184	-3.0	-0.2	-0.3	0.0	-3.5
1_555_01	1_465_01	х,у,z	-1+x,1+y,z	9.184	-3.0	-0.2	-0.3	0.0	-3.5
1_555_01	2_556_01	х,у,z	-x,-y,1-z	7.880	8.8	-0.6	-0.9	0.0	+7.3
1_555_01	2_657_01	х,у,z	1-x,-y,2-z	9.947	8.6	-0.4	-0.3	0.0	+8.0

S2. PIXEL calculations: FIII (CSD: BISMEV12, space group P2₁/n)

 Unit cell:
 a = 6.454, b = 6.386, c = 16.181 Å, alpha = 90, beta = 92.06, gamma = 90°

 Symmetry operators:
 [1]
 x, y, z
 [2]
 0.5-x,0.5+y,0.5-z
 [3]
 -x, -y, -z
 [4]
 0.5+x,0.5-y,0.5+z

Shaded rows indicate interactions between polytypic layers. Only interactions with magnitude > 3 kJ mol⁻¹ are listed.

Mol 1 ARU	Mol 2 ARU	Mol 1 Operator	Mol 2 Operator	Distance	Coulomb	Polarisation	Dispersion	Repulsion	Total
1_555_01	3_565_01	х,у,z	-х,1-у,-z	7.851	-101.9	-35.7	-20.4	92.3	-65.8
1_555_01	1_655_01	х,у,z	1+x,y,z	6.454	-47.5	-17.1	-21.5	44.8	-41.3
1_555_01	1_455_01	х,у,z	-1+x,y,z	6.454	-47.5	-17.1	-21.5	44.8	-41.3
1_555_01	3_655_01	х,у,z	1-x,-y,-z	5.124	-18.3	-8.2	-21.1	19.5	-28.1
1_555_01	2_545_01	х,у,z	0.5-x,-0.5+y,0.5-z	5.176	-17.5	-6.3	-22.4	19.3	-27.0
1_555_01	2_555_01	х,у,z	0.5-x,0.5+y,0.5-z	5.176	-17.5	-6.3	-22.4	19.3	-27.0
1_555_01	3_555_01	х,у,z	-x,-y,-z	5.258	-5.9	-3.0	-18.9	11.1	-16.7
1_555_01	1_545_01	х,у,z	x,-1+y,z	6.386	-6.2	-4.4	-15.9	14.6	-11.9
1_555_01	1_565_01	х,у,z	x,1+y,z	6.386	-6.2	-4.4	-15.9	14.6	-11.9
1_555_01	1_445_01	х,у,z	-1+x,-1+y,z	9.079	-3.1	-0.2	-0.3	0.0	-3.7
1_555_01	1_665_01	х,у,z	1+x,1+y,z	9.079	-3.1	-0.2	-0.3	0.0	-3.7
1_555_01	3_665_01	х,у,z	1-x,1-y,-z	7.762	9.6	-0.7	-0.9	0.0	+8.0

S3. Face identification of single crystals

Major faces for indentation were identified by morphology analysis on the single-crystal X-ray diffractometer (*APEX3* software package, Bruker AXS). SEM images were collected to correlate the identified faces with the crystal morphology in bulk samples. Crystals of FIII display a plate-like morphology, so only the major face {001} is available for nanoindentation. Crystals of FII have a more block-like shape, and both {001} and {10–1} faces are available for nanoindentation.

Face indexed crystals: (a) {001} and {10-1} face of FII; (b) {001} face of FIII

Structure-property correlations in piracetam polytypes

Pratik P. Upadhyay, Manish Kumar Mishra, Upadrasta Ramamurty, Andrew D. Bond Electronic Supplementary Information

S5. AFM images following nanoindentation

FII {001}

FII {10-1}

FIII {001}

S6. Thermal expansion measurements

Unit-cell parameters (Å, °) were measured over the range ca 100–300 K at for single crystals.

FII	Т (К)	а	b	С	α	β	γ	Volume
	105	6.357	6.515	8.377	80.23	101.76	90.99	334.7
	150	6.363	6.541	8.402	80.24	100.90	90.97	337.2
	200	6.372	6.572	8.449	80.12	102.01	90.99	340.9
	250	6.390	6.598	8.496	79.94	102.17	91.11	344.1
	290	6.402	6.609	8.542	79.89	102.39	91.04	347.4

FIII	Т (К)	а	b	С	α	β	γ	Volume
	100	6.455	6.383	16.176	90	92.04	90	666.1
	150	6.471	6.387	16.227	90	91.99	90	670.3
	200	6.485	6.398	16.284	90	92.04	90	675.2
	250	6.499	6.408	16.355	90	92.05	90	680.6
	300	6.509	6.419	16.416	90	92.08	90	685.4

Plots of V vs T show a good approximation to linear behavior:

The thermal expansion tensor, principal expansion coefficients and the directions of the principal axes were obtained using the PASCal web tool at the University of Oxford (<u>http://pascal.chem.ox.ac.uk/</u>). The core output from PASCal is appended on the following pages.

11/15/2020

PASCal

Output

				Direction	
Axes	α(MK ⁻¹)	σα (MK ⁻¹)	а	b	С
X ₁	20.1426	2.3792	0.9430	-0.1088	0.3144
X ₂	71.1693	1.9258	0.2231	0.8126	-0.5383
X3	116.8383	3.9956	0.1424	-0.7665	-0.6262
v	211.0011	4.9554			

Plots

PASCal

% change in length

TX1X2X3X1,calcX2,calcX3,calc105.00000.00000.00000.0000-0.04380.0269-0.0737150.00000.00410.33170.40650.04690.34710.4521200.00000.10250.78240.95780.14760.70301.0363250.00000.29711.05851.61580.24831.05881.6205290.00000.32421.30672.14290.32891.34352.0878

Volume

TV (Å3)Vlin (Å3)105.0000334.6783334.3387150.0000337.1677337.5165200.0000340.8775341.0474250.0000344.7115344.5782290.0000347.4487347.4029

Input

 T
 σT
 a
 b
 c
 α
 β
 γ

 105
 5
 6.357
 6.515
 8.377
 80.23
 101.76
 90.99

 150
 5
 6.363
 6.541
 8.402
 80.24
 101.90
 90.97

 200
 5
 6.372
 6.572
 8.449
 80.12
 102.01
 90.99

 250
 5
 6.390
 6.598
 8.496
 79.94
 102.17
 91.11

 290
 5
 6.402
 6.609
 8.542
 79.89
 102.39
 91.04

PASCal

Output

				Direction	
Axes	α(MK ⁻¹)	σα (MK ⁻¹)	а	b	С
X 1	30.2064	2.5760	-0.0000	1.0000	-0.0000
X ₂	44.2187	0.7220	-1.0000	0.0000	-0.0071
X 3	77.6486	2.7147	0.0447	-0.0000	0.9990
V	154.0260	4.7771			

Plots

PASCal

% change in length

TX1X2X3X1,calcX2,calcX3,calc100.00000.00000.00000.0000-0.04540.0080-0.0415150.00000.06270.22780.33840.10570.22910.3467200.00000.23500.46470.66770.25670.45020.7350250.00000.39170.68101.10660.40770.67131.1232290.00000.56400.83321.48450.52860.84821.4338

Volume

 T
 V (Å³)
 V_{lin} (Å³)

 100.0000
 666.0654
 665.4753

 150.0000
 670.2619
 670.6049

 200.0000
 675.2117
 675.7344

 250.0000
 680.6777
 680.8640

 290.0000
 685.4294
 684.9677

Input

 T
 σT
 a
 b
 c
 α
 β
 γ

 100
 5
 6.455
 6.383
 16.176
 90
 92.04
 90

 150
 5
 6.471
 6.387
 16.227
 90
 91.99
 90

 200
 5
 6.485
 6.398
 16.284
 90
 92.04
 90

 250
 5
 6.499
 6.408
 16.355
 90
 92.05
 90

 290
 5
 6.509
 6.419
 16.416
 90
 92.08
 90