Electronic supplementary Information:

3D/2D Bi₂S₃/SnS₂ Heterostructures: Superior Charge Separation and Enhanced Solar Light Driven Photocatalytic Performance

Sumana Paul^{1,3†}, Dulal Barman¹^{¶†}, Chandra Chowdhury², P. K. Giri³ and Subodh Kumar De¹*

¹Scool of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata- 700032, India

²Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.

³Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.

*E-mail: msskd@iacs.res.in

[†]Authors Contributed Equally

Present Address: Department of Physics, Balurghat College, Balurghat, Dakshin Dinajpur 733101, India.

Fig. S1. (A) TEM image of BSS2 heterostructure. (B) A closer view of densely SnS_2 decorated Bi_2S_3 urchine. (C) HRTEM image of a nanorod fully covered with SnS_2 nanosheets. (D) FFT pattern obtained from the yellow square region showing planes of both Bi_2S_3 and SnS_2 where (011), (210) correspond of planes Bi_2S_3 and (012), (001) corresponds to planes of SnS_2 .

Fig. S2. (A) Large area TEM image of SnS_2 nanosheets. (B) A closer view of a few nanosheets. (C) HRTEM image obtained from a single SnS_2 nanosheet. (D) FFT pattern obtained from the blue square region showing the planes (100), (170), (210) of SnS_2 .

Fig. S3. TEM image (A) of the Bi_2S_3/SnS_2 heterostructure (BSS1.5) and the corresponding EDS mapping of Bi (B, magenta), Sn (C, cyan) and S (D, yellow) and (E) the EDS scan.

Fig. S4. TEM image (A) of the Bi_2S_3/SnS_2 heterostructure (BSS2) and the corresponding EDS mapping of Bi (B, magenta), Sn (C, cyan) and S (D, yellow) and (E) the EDS scan.

Fig. S5. Photocatalytic degradation of RhB dye in presence of (A) Bi₂S₃ urchines, (B) BSS1, (C) BSS1.5 and (D) BSS2 heterostructure under solar simulator.

Fig. S6. Photocatalytic degradation of MB dye in presence of (A) Bi₂S₃ urchines, (B) BSS1, (C) BSS1.5 and (D) BSS2 heterostructures under solar simulator.

Fig. S7. Detection of Cr(VI) in presence of (A) Bi₂S₃ urchines, (B) BSS1, (C) BSS1.5 and (D) BSS2 heterostructure under solar simulator.

Fig. S8. XRD pattern of (A) pure Bi₂S₃, BSS1.5 and BSS2 heterostructures after photocatalytic activity and SEM images of (B) pure Bi₂S₃, (C) BSS1.5 and (D) BSS2 heterostructures after photocatalytic activity.

Fig. S9. Room temperature PL spectra of different photocatalysts.

Fig. S10. BET adsorption–desorption isotherms and the pore-size distribution (inset) of (A) pure Bi₂S₃, (B) BSS1.5 and (C) BSS2 heterostructures.

Fig. S11. (A) Determination of hydroxyl radicals on the surface of different photocatalysts under solar light irradiation for 30 min using photoluminescence spectra of TAOH (λ =315 nm) at 425 nm. Photoluminescence spectra of the solar light irradiated (B) BS, (C) BSS1, (D) BSS1.5 suspensions in terephthalic acid at different irradiation time.

Table S1: Relative band position of the Bi_2S_3 and SnS_2 .

Semiconductor	Electronegativity of the semiconductor (eV)	Optical band gap (eV)	Valance Band Position (eV)		Conduction Band Position (eV) (Experiment)	
			Experiment	Theory	Experiment	Theory
Bi ₂ S ₃	5.28	1.2	1.38	1.60	0.18	0.12
SnS₂	6.33	2.48	3.07	2.05	0.59	0.55

Scheme 1. Relative band alignment of Bi_2S_3 and SnS_2 .