Supplementary Information

A novel Co-based MOF/Pd composite: synergy of charge-transfer towards the electrocatalytic oxygen evolution reaction

Luis A. Alfonso-Herrera^a, Leticia M. Torres-Martínez^{a,b} and J.Manuel Mora-Hernandez^{c,*}

Fig. S1 - Resonance structures and double bond stabilization produced by a retro-donation effect

Fig. S2 – Measurement of the interplanar distance for the LEEL-037/Pd-C composite

Fig. S3 – Peaks analysis to determine the Pd and PdO percentage in a) Pd/C and b) LEEL-037(50)/Pd/C(50) electrocatalysts

Electrochemical surface area calculation

To calculate the ECSA, it is necessary to determine the coulombic charge (Q) corresponding to the oxide reduction peak area from the current vs. potential (*I vs. E*) CV plot. The following images for Pd/C (left) and LEEL-037(50)/Pd-C(50) (right) are depicted as an example to show the calculation:

Fig. S4 – Coulombic charge determination for Pd/C (left) and LEEL-037(50)/Pd-C(50) (right)

The coulombic charge for Pd/C and LEEL-037(50)/Pd-C(50) electrocatalyst are 107.55 μ A*V and 61.30 μ A*V, respectively. The ECSA is defined as follows:

$$\mathsf{ECSA} = \frac{Q}{Q_{Pd0} * Pd_m * \nu} \tag{1}$$

where *Q* is the PdO coulombic charge (μA^*V), Q_{PdO} is the charge required for the reduction of PdO monolayer, which is assumed as 420 μ C cm⁻² [1,2] Pd_m is the Pd loading in "mg", and *v* is the scan rate in V s⁻¹ (0.05 V s⁻¹ for this experimentation). The mass percentage (wt.%) of bare Pd/C and LEEL-037/Pd-C electrodes is described in Table S1.

Electrocatalyst	Vulcan	Vulcan	Pd	Pd	LEEL-037	LEEL-037
	Carbon	Carbon	(wt.%)	(mg)	(wt.%)	(mg)
	XC-72	XC-72				
	(wt.%)	(mg)				
Pd/C	70	7	30	3	0	0
LEEL-037(25)/Pd-C(75)	52.5	5.25	22.5	2.25	25	2.5
LEEL-037(50)/Pd-C(50)	35	3.5	15	1.5	50	5
LEEL-037(75)/Pd-C(25)	15	1.5	7.5	.75	75	7.5

Table S1. Electrocatalysts composition

To calculate the Pd loading for Pd/C and LEEL-037(50)/Pd-C(50), we know that we used 3 μ L of the electrocatalytic ink containing 10 mg of the electrocatalyst in turn, 1250 μ L of water, and 250 μ L of 5 wt.% Nafion[®] solution (density \approx 1 mg ml⁻¹). The Pd loading (*Pd_m*) was calculated as follows:

For Pd/C electrocatalyst;

$$Pd_{m} = \frac{10 mg Pd/C}{1.5 ml (water - Nafion)} * 0.003 ml (ink aliquot) * 0.3 wt.\% Pd = 0.006 mg Pd$$

For LEEL-037(50)/Pd-C(50) electrocatalyst;

$$Pd_{m} = \frac{10 \ mg \ LEEL - 0.07(50) Pd/C(50)}{1.5 \ ml \ (water - Nafion)} * 0.003 \ ml \ (ink \ aliquot) * 0.15 \ wt.\% \ Pd = 0.003 \ mg \ Pd$$

Substituting the data in eq.1, the ECSAs for Pd/C and LEEL-037(50)/Pd-C(50) electrocatalyst are 85.36 m² g_{Pd}^{-1} and 97.3 m² g_{Pd}^{-1} , respectively.

			l	1	I
Material	Operational	Tafel	Crystal size	Electrolyte	Reference
	overpotential	slope	(nm)		
	at 10 mA/	(mV			
	cm² (mV)	dec⁻¹)			
LEEL-037(25)/Pd-C(75)	430	173	30.80*	KOH 0.5 M	This work
LEEL-037	480	104	35.80	KOH 0.5 M	This work
Ni-Co@carbon	243	67		KOH 1.0 M	[3]
Co ₃ O ₄ /NC	325	80		KOH 1.0 M	[4]
Ni-BDC	360	57	45.03	KOH 1.0 M	[5]
Ni _{0.75} Fe _{0.25} BDC	310	43.7	17.11	KOH 0.1 M	[6]
Fe@BIF-91	350	71	63.72	KOH 1.0 M	[7]
ZIF-67/CoNiAl-LDH/NF	303	88	46.23	KOH 1.0 M	[8]
FeNi@CNF	356	62.6	21.89	KOH 1.0 M	[9]
β-Ni(OH)2/Cu ₂ S hybrid	500	89	29.1	KOH 0.1 M	[10]
nanosheets					
NiTe	388	117	27.98	KOH 1.0 M	[11]
Co ₃ O ₄	394	149.6	14.36	KOH 1.0 M	[12]
Fe₂P@NPC	510	140			
NiFeP@PC	460	131	25.68	KOH 1.0 M	[13]
Ni₂P@NPC	440	110	13		
Ni _{1.5} Fe _{0.5} P@NPC	410	87	26.9		
CoP@NG	354	63.8	17.95	KOH 1.0 M	[14]
ZnO@NMC	570	318	41.75	KOH 0.5 M	[15]
nanocomposite					

Table S2.	Comparison	of phy	ysicochemical	and	electrocatalytic	properties	for	Ru	and	lr f	free
electrocat	talysts used to	carry	out the OER in	alka	line medium.						

*Crystallite size calculated at the main diffraction peak (2θ) for Pd/C (40.3°).

Table S3. Calculated values of the equivalent circuit elements for the samples

Sample	Rs (Ω)	CPE-T	CPE-P	Rct (Ω)	X ²
Pd/C	32.22	3.8X10 ⁻⁴	0.8176	80.13	2.5X10 ⁻³
MOF	32.85	1.8X10 ⁻⁴	0.6886	64.20	1.9X10 ⁻³
LEEL-037(25)/Pd-C(75)	33.80	9 X10 ⁻⁵	0.7558	36.42	2.6X10 ⁻³
LEEL-037(50)/Pd-C(50)	33.70	6.9 X10 ⁻⁴	0.6909	52.02	1.7X10 ⁻³
LEEL-037(75)/Pd-C(25)	33.23	2.2 X10 ⁻⁴	0.6968	64.27	2.2X10 ⁻³

References

- A.N. Correia, L.H. Mascaro, S.A.S. Machado, L.A. Avaca, Active surface area determination of Pd-Si alloys by H-adsorption, Electrochim. Acta. (1997). https://doi.org/10.1016/S0013-4686(96)00232-0.
- [2] D.A.J. Rand, R. Woods, The nature of adsorbed oxygen on rhodium, palladium and gold electrodes, J. Electroanal. Chem. (1971). https://doi.org/10.1016/S0022-0728(71)80039-6.
- G. Wu, S. Liu, G. Cheng, H. Li, Y. Liu, Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction, Appl. Surf. Sci. 545 (2021) 148975. https://doi.org/10.1016/j.apsusc.2021.148975.
- [4] H. Li, M. Tan, C. Huang, W. Luo, S.F. Yin, W. Yang, Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis, Appl. Surf. Sci. 542 (2021) 148739. https://doi.org/10.1016/j.apsusc.2020.148739.
- [5] D. Zhu, J. Liu, L. Wang, Y. Du, Y. Zheng, K. Davey, S.Z. Qiao, A 2D metal-organic framework/Ni(OH) 2 heterostructure for an enhanced oxygen evolution reaction, Nanoscale. 11 (2019) 3599–3605. https://doi.org/10.1039/c8nr09680e.
- [6] Y. Hao, Q. Liu, Y. Zhou, Z. Yuan, Y. Fan, Z. Ke, C. Su, G. Li, A 2D NiFe Bimetallic Metal– Organic Frameworks for Efficient Oxygen Evolution Electrocatalysis, ENERGY Environ. Mater. (2019). https://doi.org/10.1002/eem2.12024.
- [7] T. Wen, Y. Zheng, J. Zhang, K. Davey, S.Z. Qiao, Co (II) Boron Imidazolate Framework with Rigid Auxiliary Linkers for Stable Electrocatalytic Oxygen Evolution Reaction, Adv. Sci. (2019). https://doi.org/10.1002/advs.201801920.
- [8] J. Xu, Y. Zhao, M. Li, G. Fan, L. Yang, F. Li, A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction, Electrochim. Acta. (2019). https://doi.org/10.1016/j.electacta.2019.03.210.
- Y. Li, M. Lu, P. He, Y. Wu, J. Wang, D. Chen, H. Xu, J. Gao, J. Yao, Bimetallic Metal-Organic Framework-Derived Nanosheet-Assembled Nanoflower Electrocatalysts for Efficient Oxygen Evolution Reaction, Chem. - An Asian J. (2019). https://doi.org/10.1002/asia.201900328.
- [10] D. Yang, L. Gao, J.H. Yang, Facile synthesis of ultrathin Ni(OH)2-Cu2S hexagonal nanosheets hybrid for oxygen evolution reaction, J. Power Sources. (2017). https://doi.org/10.1016/j.jpowsour.2017.05.034.
- [11] L. Zhong, Y. Bao, X. Yu, L. Feng, An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction, Chem. Commun. (2019). https://doi.org/10.1039/c9cc04429a.
- [12] Z. Liu, Z. Xiao, G. Luo, R. Chen, C.L. Dong, X. Chen, J. Cen, H. Yang, Y. Wang, D. Su, Y. Li, S. Wang, Defects-Induced In-Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction, Small. (2019). https://doi.org/10.1002/smll.201904903.

- [13] J. Wang, F. Ciucci, In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction, Appl. Catal. B Environ. (2019). https://doi.org/10.1016/j.apcatb.2019.05.009.
- [14] Y. Lu, W. Hou, D. Yang, Y. Chen, CoP nanosheets in-situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions, Electrochim. Acta. (2019). https://doi.org/10.1016/j.electacta.2019.03.208.
- [15] M. Ubaidullah, A.M. Al-Enizi, S. Shaikh, M.A. Ghanem, R.S. Mane, Waste PET plastic derived ZnO@NMC nanocomposite via MOF-5 construction for hydrogen and oxygen evolution reactions, J. King Saud Univ. - Sci. (2020). https://doi.org/10.1016/j.jksus.2020.03.025.