Supporting Information

Morphology and electronic modulation of composite nanosheets for electrocatalytic oxygen evolution through partial and in-situ transformation of NiFe-LDH

Xiaodong Yang^{a,#}, Zihan Zhao^{a,#}, Qi Shen^{a,*}, Chen Xu^a, Chuanxin Shi^a,

Wenwen Cao^a, Yiqiang Sun^{a,b,c,*}, Bo Xu^{a,*}

a School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China

b School of Materials Science And Engineering, University of Jinan, Shandong, Jinan 250022, China

c Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China

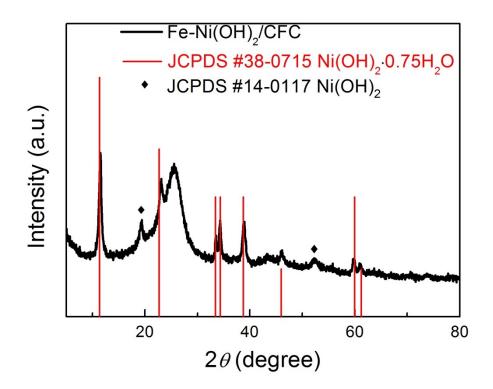


Figure S1. XRD diffraction pattern of Fe-Ni(OH)₂/CFC and standard Ni(OH)₂ \cdot 0.75H₂O characteristic peak (\blacklozenge represents the characteristic peak of Ni(OH)₂).

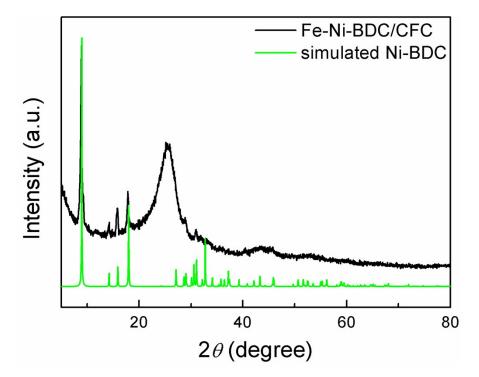
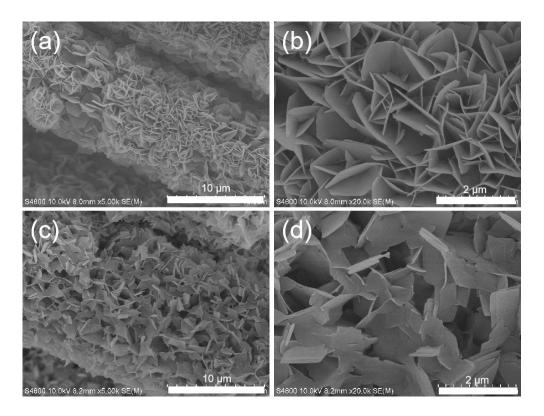
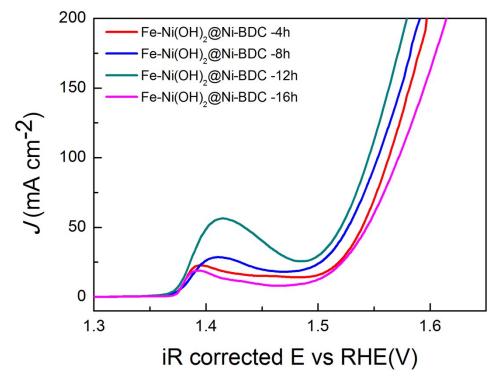




Figure S2. XRD diffraction pattern of Fe-Ni-BDC/CFC with standard simulated

curve.

Figure S3. (a, b) SEM images with different magnifications of Fe-Ni(OH)₂/CFC with different magnifications; (c, d) SEM images with different magnifications of Fe-Ni-BDC/CFC with different magnifications.

Figure S4. LSV curves of Fe-Ni(OH)₂@Ni-BDC/CFC-X (X = 4, 8, 12, 16).

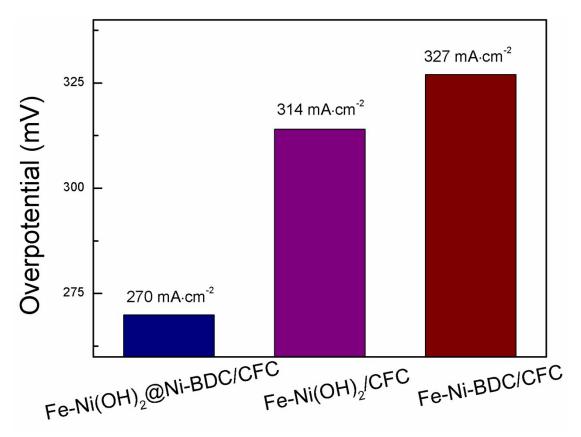


Figure S5. Overpotential of Fe-Ni(OH)₂@Ni-BDC/CFC, Fe-Ni(OH)₂/CFC and Fe-Ni-BDC/CFC at 30 mA cm⁻² Vs Ag/AgCl.

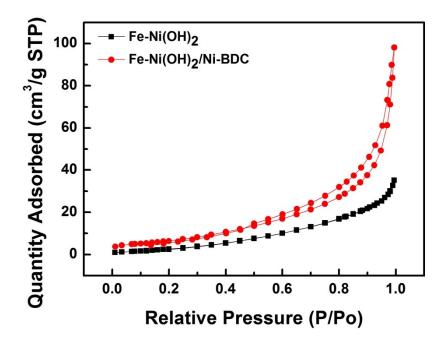


Figure S6. The nitrogen adsorption-desorption isotherm $Fe-Ni(OH)_2$ and $Fe-Ni(OH)_2$ @Ni-BDC/CFC.

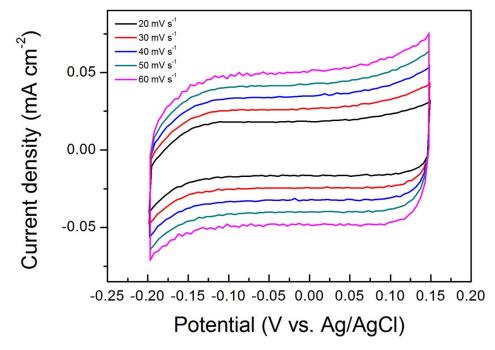
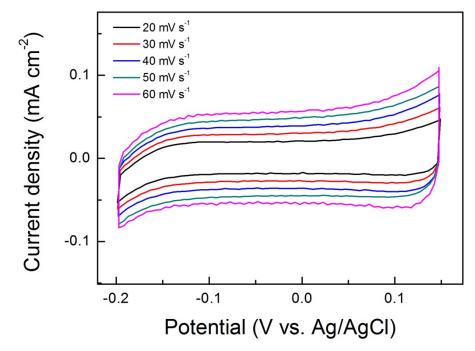
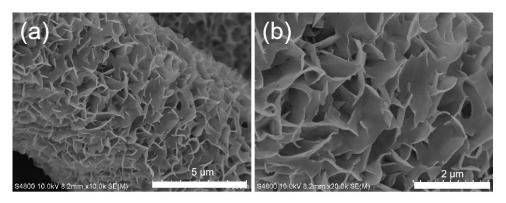
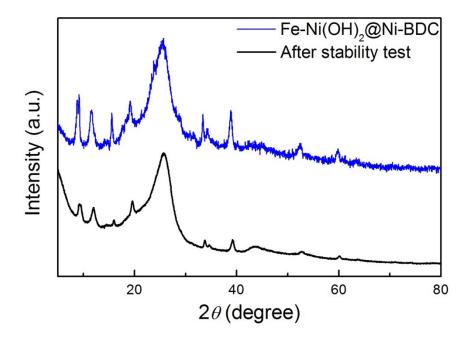


Figure S7. Cyclic voltammetry curves of Fe-Ni(OH)₂/CFC at a scan rate of 20 to 60 mV/sv for determining their C_{dl} data.



Figure S8. Cyclic voltammetry curves of Fe-Ni(OH)₂@Ni-BDC/CFC at a scan rate of 20 to 60 mV s⁻¹ for determining their C_{dl} data.

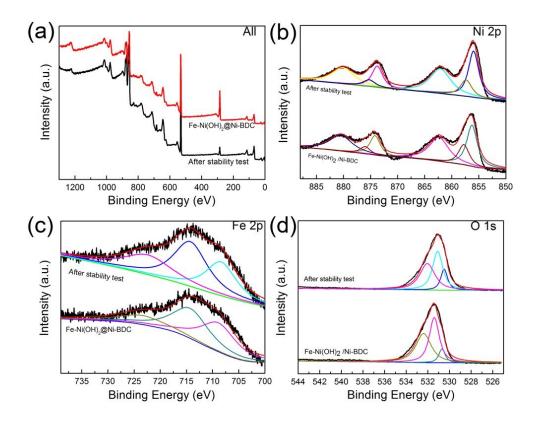

Figure S9. Cyclic voltammetry curves of Fe-Ni-BDC/CFC at a scan rate of 20 to 60 mV s^{-1} for determining their C_{dl} data.

Figure S10. (a, b) SEM images with different magnifications of Fe-Ni(OH)₂@Ni-BDC/CFC after electrocatalytic stability test.

Figure S11. XRD diffraction pattern of Fe-Ni(OH)₂@Ni-BDC/CFC before and after electrocatalytic stability test.

Figure S12. (a) XPS survey spectra for Fe-Ni(OH)₂@Ni-BDC/CFC after stability test; (b) The Ni 2p XPS spectra for Fe-Ni(OH)₂@Ni-BDC/CFC after stability test; (c) The Fe 2p XPS spectra for Fe-Ni(OH)₂@Ni-BDC/CFC after stability test; (d) The O 1s XPS spectra for Fe-Ni(OH)₂@Ni-BDC/CFC after stability test.

Catalyst	Overpotential/mV	Electrolyte	Reference
Fe-Ni(OH) ₂ @Ni- BDC/CFC	270 @ 30 mA/cm ²	1.0 M KOH	This work
NiCdFe	290 @ 10 mA/cm ²	1.0 M KOH	Appl Catal B-Environ 2018, 225, 1
FeOOH/NiFe LDHs@CCH NAs-NF	330 @ 100 mA/cm ²	1.0 M KOH	J. Mater. Chem. A, 2018, 6, 3397
Ni-Fe-Co alloy nanocones	310 @ 10 mA/cm ²	1.0 M KOH	J.Colloid.Interf.Sci., 2019,547,407
NiFe/C	300 @ 10 mA/cm ²	1.0 M KOH	ACS Catal., 2016,6,4477
NiCoFe-LDH	280 @ 10 mA/cm ²	1.0 M KOH	Electrochim Acta., 2016,8,5327
(Ni, Fe)S ₂ @MoS ₂	270 @ 10 mA/cm ²	1.0 M KOH	Appl Catal B-Environ, 2019, 247, 107
NiFe hydroxysulfide	286 @ 10 mA/cm ²	1.0 M KOH	Energy Environ. Sci, 2020,13, 1711
S-doped NiFe- LDH	300 @ 100 mA/cm ²	1.0 M KOH	Energy Environ. Sci, 2020,13, 3439

Table S1. Comparison of the OER performance of Fe-Ni(OH)2@Ni-BDC/CFC withsome NiFe based catalysts.