The favorable routes for the hydrolysis of CH_2OO with $(H_2O)_n$

(n = 1-4) investigated by global minimum searching combined

with quantum chemical methods

Rui Wang^{a,e}, Mingjie Wen^{a,e,#}, Shuai Liu^{a,#}, Yousong Lu^{b,#}, Makroni Lily^{b,#}, Balaganesh Muthiah^d, Tianlei Zhang^{a,e,*}, Zhiyin Wang^a, Zhuqing Wang^{c,*}

^a School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China

^b Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China

^d Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

^eShanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China

S. NO	Caption
	Fig. S1 Optimized geometries and the binding energy for the complexes of $(H_2O)_n$ ($n = 1-4$) at
3	the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2d,2p) level of theory (in kcal·mol ⁻¹)
	(Bond distances in Angstroms and angles in degrees)
	Table S1 Zero point energies (ZPE/(kcal·mol ⁻¹)), relative energies (ΔE and $\Delta (E+ZPE)/$
4	(kcal·mol ⁻¹)), enthalpies ($\Delta H(298K)/(kcal·mol-1)$), entropy (S(298)/(cal·mol ⁻¹ ·K ⁻¹)) and free
	energies ($\Delta G(298\text{K})/(\text{kcal}\cdot\text{mol}^{-1})$) for the (H ₂ O) _n (n = 2-4) ^a
	Fig. S2 The most stable geometry and the binding energy of $CH_2OO\cdots(H_2O)_2$ complexes
5	searched by ABCluster program (in kcal·mol-1) (Bond distances in Angstroms and angles in
	degrees)
6	Fig. S3 The geometrical possible structures and the binding energy for the $CH_2OO\cdots(H_2O)_n$ (<i>n</i>
	= 1-4) complexes at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G($2d$,2 p) level of theory
	(in kcal·mol ⁻¹) (Bond distances in Angstroms and angles in degrees)
	Table S2 Zero point energy (ZPE(298K)/(kcal·mol ⁻¹)), relative energies (ΔE (298K) and $\Delta (E +$
7-8	ZPE)(298K)/(kcal·mol ⁻¹)), enthalpies (ΔH (298K)/(kcal·mol ⁻¹)), entropy (S/(cal·mol ⁻¹ ·K ⁻¹)) and
	free energies ($\Delta G(298\text{K})/(\text{kcal·mol}^{-1})$) for the reactant complexes of CH ₂ OO···(H ₂ O) _n (n = 1-4) ^a
	Table S3 Zero point energy (ZPE(298K)/(kcal·mol ⁻¹)), relative energies (ΔE (298K) and $\Delta (E +$
9	ZPE)(298K)/(kcal·mol ⁻¹)), enthalpies (ΔH (298K)/(kcal·mol ⁻¹)), entropy (S/(cal·mol ⁻¹ ·K ⁻¹)), and
,	free energies ($\Delta G(298\text{K})/(\text{kcal·mol}^{-1})$) for the favorable routes of the CH ₂ OO + (H ₂ O) _n (n = 1-4)
	reaction ^a
10	Fig. S4 Schematic energy diagrams for the unfavorable routes of the $CH_2OO + (H_2O)_2$ reaction
10	at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2 <i>d</i> ,2 <i>p</i>) level
11	Fig. S5 Schematic energy diagrams for the unfavorable routes of the $CH_2OO + (H_2O)_3$ reaction
	at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2 <i>d</i> ,2 <i>p</i>) level

^c School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China

^{*} Corresponding authors. Tel: +86-0916-2641083, Fax: +86-0916-2641083.

E-mail:ztianlei88@163.com(T.L. Zhang);wangzq128@163.com(Z.Q. Wang).

[#] These authors are contributed equally to this work.

[†] Electronic supplementary information (ESI) available.

10	Fig. S6 Schematic energy diagrams for the unfavorable routes of the $CH_2OO + (H_2O)_4$ reaction
12	at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2d,2p) level
13-14	Fig. S7 The trajectories of BOMD simulation combined with NVT ensemble for the favorable
	channels of the gas phase hydrolysis reaction of CH_2OO with $(H_2O)_n$ ($n = 1-3$)
15 16	Fig. S8 The trajectories of BOMD simulation combined with NVE ensemble for the favorable
13-10	channels of the gas phase hydrolysis reaction of CH_2OO with $(H_2O)_n$ ($n = 1-3$)
	Fig. S9 Schematic energy diagrams for the favorable channels of the $CH_2OO + (H_2O)_n$ ($n = 2-4$)
17	reactions starting from geometric isomers of $CH_2OO\cdots(H_2O)_n$ ($n = 2-4$) complexes at the
	CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2 <i>d</i> ,2 <i>p</i>) level
10 10	Table S4 Rate constants (cm ³ ·molecules ⁻¹ ·s ⁻¹) for the CH ₂ OO + (H ₂ O) _n ($n = 1-4$) reaction within
18-19	the temperature range of 290-320 K
	Table S5 The high-pressure canonical rate constant k_{total} (cm ³ ·molecule ⁻¹ ·s ⁻¹) and the calculated
20	branching ratio (β) k_{-1} (pre-reactive complex IM_WD1a ₁ \rightarrow reactants CH ₂ OO + (H ₂ O) ₂) and
20	k_2 (pre-reactive complex IM_WD1a ₁ \rightarrow transition state TS_WD1a ₁ \rightarrow products HOCH ₂ OO +
	H_2O) within the temperature range of 213-320 K
	Table S6 Rate constants (cm ³ ·molecules ⁻¹ ·s ⁻¹) of hydrogen atoms isomerization with the
21	favorable routes for the CH ₂ OO + (H ₂ O) _n ($n = 2-4$) reaction within the temperature range of
	290-320 K ^a
22	Table S7 Rate constants (cm ³ ·molecules ⁻¹ ·s ⁻¹) and rate ratio for the unfavorable routes of the
	$CH_2OO + (H_2O)_n$ (<i>n</i> = 2-4) reaction within the temperature range of 290-320 K ^a
	Table S8 Calculated concentration of water clusters (in molecule·cm ⁻³) within the temperature
23	range of 290-320 K at different relative humidity (RH) at the ground level of the Earth's
	atmosphere ^a
24	Table S9 The relative rate for the hydrolysis of CH_2OO with $(H_2O)_n$ ($n = 1-4$) at different
24	relative humidity (RH) ^a
25	Table S10 Rate ratios of v_{WM1}/v_{total} , v_{WD1}/v_{total} , v_{WT1}/v_{total} and v_{WQ1}/v_{total} within the temperature
	range of 290-320 K at different relative humidity (RH) ^a
26-20	Table S11 Coordinates and geometrical structures for the stationary points in the favorable
26-29	hydrolysis of CH ₂ OO with (H ₂ O) _n ($n = 1-4$) reaction at the B3LYP/6-311+G(2d.2p) level

Fig. S1 Optimized geometries and the binding energy for the complexes of $(H_2O)_n$ (n = 1-4) at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level of theory (in kcal·mol⁻¹) (Bond distances in Angstroms and angles in degrees)

	,,	(=)(,			
Species	ZPE	ΔE	ΔG	S	$\Delta(E + ZPE)$	ΔH
$H_2O + H_2O$	26.8	0.0	0.0	90.2	0.0	0.0
$(H_2O)_2$	29.1	-5.0 (-5.0) ^b	2.9 (2.6) ^b	69.2	-2.8 (-2.9) ^b	-3.3 (-3.3) ^b
$H_2O + (H_2O)_2$	42.5	0.0	0.0	114.3	0.0	0.0
(H ₂ O) ₃ -a	45.8	-10.6 (-10.9) ^b	1.8 (1.3) ^b	79.3	-7.3 (-7.6) ^b	-8.6 (-8.8) ^b
(H ₂ O) ₃ -b	45.6	-9.8 (-10.1) ^b	2.2 (1.2) ^b	80.4	-6.7 (-7.2) ^b	-7.9 (-8.1) ^b
$H_2O + (H_2O)_3$	59.3	0.0	0.0	124.4	0.0	0.0
$(H_2O)_2 + (H_2O)_2$	58.1	5.6 (5.8) ^b	1.1 (0.1) ^b	138.5	4.5 (4.1) ^b	5.3 (5.17) ^b
(H ₂ O) ₄ -a	62.1	-11.7 (-11.7) ^b	-0.1 (-0.4) ^b	91.9	-8.8 (-8.8) ^b	-9.8 (-9.7) ^b
(H ₂ O) ₄ -b	61.9	-10.8 (-10.8) ^b	0.4 (0.2) ^b	93.0	-8.1 (-8.1) ^b	-9.0 (-8.9) ^b
(H ₂ O) ₄ -c	61.5	-6.7	3.5	95.8	-4.5	-5.0
(H ₂ O) ₄ -d	61.0	-5.2 (-5.2) ^b	3.3 (2.9) ^b	101.5	-3.4 (-3.3) ^b	-3.5 (-3.4) ^b
(H ₂ O) ₄ -e	60.9	-5.1	2.8	103.5	-3.4	-3.5

Table S1 Zero point energies (ZPE/(kcal·mol⁻¹)), relative energies (ΔE and $\Delta(E+ZPE)/$ (kcal·mol⁻¹)), enthalpies ($\Delta H(298K)/(kcal·mol⁻¹)$), entropy (S(298)/(cal·mol⁻¹·K⁻¹)), and free energies ($\Delta G(298K)/(kcal·mol⁻¹)$) for the (H₂O)_n (n = 2-4)^a

^{*a*} ZPE and S values obtained at B3LYP/6-311+G(2*d*,2*p*) level of theory; The energy values are obtained at CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level whereas the *H* and *G* corrections are taken from the B3LYP/6-311+G(2*d*,2*p*) level;

^b The values in parentheses are the previously report from reference (J. Phys. Chem. A, 2013, 117, 10381-10396.).

Fig. S2 The most stable geometry and the binding energy of CH₂OO···(H₂O)₂ complexes searched by ABCluster program (in kcal·mol⁻¹) (Bond distances in Angstroms and angles in degrees)

In order to verify the accuracy of the stable complexes searched by the TGMin program, the similar cluster searching program named ABCluster program ^{1,2} has been adopted to verify the stable complexes again. The calculated results show that the obtained stable complexes by ABCluster program is highly agreeable consistent with our results (Fig. S2). So, global minimum searching using Tsinghua Global Minimum program has been introduced to find the most stable geometry of $CH_2OO\cdots$ ($H_2O)_n$ (n = 1-4) complex in the present work.

Reference

- 1. J. Zhang and M. Dolg, Phys. Chem. Chem. Phys. 2016, 18, 3003-3010.
- 2. J. Zhang and M. Dolg, Phys. Chem. Chem. Phys. 2015, 17, 24173-24181.

Fig. S3 The geometrical possible structures and the binding energy for the $CH_2OO\cdots(H_2O)_n$ (n = 1-4) complexes at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level of theory (in kcal·mol⁻¹) (Bond distances in Angstroms and angles in degrees)

ellergies ($\Delta O(298K)/(Kt)$	al·11101)) I	of the reac	tant compi	exes of CH200	$(11_{2}O)_{n}(n-1)$	-4)*
Species	ZPE	ΔE	ΔG	S	$\Delta(E + ZPE)$	ΔH
$CH_2OO + H_2O$	33.0	0.0	0.0	104.6	0.0	0.0
CH ₂ OO····H ₂ O	35.0	-8.6	0.9	78.1	-6.5	-7.0
$CH_2OO + (H_2O)_2$	48.6	0.0	0.0	128.8	0.0	0.0
CH ₂ OO····(H ₂ O) ₂ -a ₁	51.3	-13.9	-0.1	88.2	-11.2	-12.2
CH ₂ OO····(H ₂ O) ₂ -a ₂	51.3	-13.7	0.0	88.5	-11.0	-12.0
CH ₂ OO····(H ₂ O) ₂ -a ₃	51.2	-13.6	0.0	89.1	-11.0	-11.9
CH ₂ OO····(H ₂ O) ₂ -a ₄	51.0	-13.2	0.1	89.7	-10.7	-11.5
СН ₂ ОО····(H ₂ O) ₂ -b	50.1	-8.0	1.4	102.8	-6.5	-6.4
$CH_2OO + (H_2O)_3$	65.1	0.0	0.0	140.0	0.0	0.0
CH ₂ OO····(H ₂ O) ₃ -a ₁	67.2	-10.2	2.5	102.6	-8.2	-8.6
CH ₂ OO····(H ₂ O) ₃ -a ₂	67.1	-9.8	2.9	102.7	-7.8	-8.2
CH ₂ OO····(H ₂ O) ₃ -b ₁	66.9	-9.9	1.9	106.0	-8.1	-8.2
CH ₂ OO····(H ₂ O) ₃ -b ₂	67.0	-9.5	2.2	106.1	-7.7	-7.8
CH ₂ OO····(H ₂ O) ₃ -c ₁	66.8	-9.0	1.6	110.0	-7.3	-7.3
CH ₂ OO····(H ₂ O) ₃ -c ₂	66.8	-8.8	2.0	109.7	-7.1	-7.1
$CH_2OO + (H_2O)_4$	81.6	0.0	0.0	151.5	0.0	0.0
CH ₂ OO····(H ₂ O) ₄ -a ₁	82.9	-9.9	0.8	120.5	-8.6	-8.4
CH ₂ OO····(H ₂ O) ₄ -a ₂	82.8	-9.7	1.2	119.8	-8.5	-8.3
CH ₂ OO····(H ₂ O) ₄ -a ₃	83.0	-9.7	1.4	119.2	-8.3	-8.3
CH ₂ OO····(H ₂ O) ₄ -a ₄	82.8	-9.5	0.9	121.3	-8.4	-8.1
CH ₂ OO····(H ₂ O) ₄ -b ₁	83.0	-10.3	1.5	116.9	-8.9	-8.8
CH ₂ OO····(H ₂ O) ₄ -b ₂	83.0	-10.0	1.6	117.4	-8.6	-8.6
CH ₂ OO····(H ₂ O) ₄ -b ₃	82.9	-9.7	1.1	119.7	-8.5	-8.3
CH ₂ OO····(H ₂ O) ₄ -b ₄	82.8	-9.6	1.1	120.5	-8.4	-8.2
СН2ОО…(Н2О)4-с	82.8	-7.3	3.7	119.4	-6.1	-5.9
CH ₂ OO····(H ₂ O) ₄ -d	83.0	-7.9	2.4	122.5	-6.5	-6.3
CH ₂ OO…(H ₂ O) ₄ -e	82.9	-7.5	2.5	123.3	-6.2	-5.9
CH ₂ OO····(H ₂ O) ₄ -f	81.9	-1.5	6.3	128.1	-1.2	-0.7

Table S2 Zero point energy (ZPE(298K)/(kcal·mol⁻¹)), relative energies (ΔE (298K) and $\Delta (E + ZPE)(298K)/(kcal·mol⁻¹)$), enthalpies (ΔH (298K)/(kcal·mol⁻¹)), entropy (S/(cal·mol⁻¹·K⁻¹)) and free energies (ΔG (298K)/(kcal·mol⁻¹)) for the reactant complexes of CH₂OO···(H₂O)_n (n = 1-4)^a

^{*a*} ZPE and S values obtained at B3LYP/6-311+G(2*d*,2*p*) level of theory; The energy values are obtained at CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level whereas the *H* and *G* corrections are taken from the B3LYP/6-311+G(2*d*,2*p*) level

Though some isomers shown in Table S2 have positive Gibbs free energy of formation, and thus would not form spontaneously owing to the large entropic penalty.^{1,2} However, as seen in references,³⁻¹⁴ water catalyzed reactions starting from hydrogen bonded complexes between water and reactant remains a major route to estimate the catalytic effect of water on atmospheric reaction in tropospheric conditions.

Reference:

1. S. S. Iyengar, J. Chem. Phys., 2005, 123, 084310.

- S. M. Dietrick, A. B. Pacheco, P. Phatak, P. S. Stevens and S. S. Iyengar, J. Phys. Chem. A, 2012, 116, 399-414.
- 3. W. Chao, J. T. Hsieh and C. H. Chang, Science, 2015, 347, 751-754.
- 4. C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169.
- 5. T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin III, M. Sipilä, M. Kulmalab and H. Herrmanna, *Phys. Chem. Chem. Phys.*, 2014, **16**, 19130-19136.
- T. R. Lewis, M. A. Blitz, D. E. Heard and W. Seakins, *Phys. Chem. Chem. Phys.*, 2015, 17, 4859-4863.
- 7. L. C. Lin, H. T. Chang, C. H. Chang, W. Chao, M. C. Smith, C. H. Chang, J. J. M. Lin and K. Takahashi, *Phys. Chem. Chem. Phys.*, 2016, 18, 4557-4568.
- X. F. Tan, B. Long, D. S. Ren, W. J. Zhang, Z. W. Long and E. Mitchell, *Phys. Chem. Chem. Phys.*, 2018, 20, 7701-7709.
- M. C. Smith, C. H. Chang, W. Chao, L. C. Lin, K. Takahashi, K. A. Boering and J. J. M. Lin, J. Phys. Chem. Lett., 2015, 6, 2708-2713.
- 10. M. K. Louie, J. S. Francisco, M. Verdicchio, S. J. Klippenstein and A. Sinha, *J. Phys. Chem. A*, 2016, **120**, 1358-1368.
- 11. B. Bandyopadhyay, P. Kumar and P. Biswas, J. Phys. Chem. A, 2017, 121, 3101-3108.
- 12. S. Mallick, S. Sarkar, B. Bandyopadhyay and P. Kumar, J. Phys. Chem. A, 2018, 122, 350-363.
- 13. L. Chen, W. Wang, L. Zhou, W. Wang, F. Liu, C. Li and J. Lü. Theor. Chem. Acc., 2016, 135, 252.
- 14. L. Chen, W. Wang, W. Wang, Y. Liu, F. Liu, N. Liu and B. Wang, *Theor. Chem. Acc.*, 2016, **135**, 131.

Table S3 Zero point energy (ZPE(298K)/(kcal·mol⁻¹)), relative energies (ΔE (298K) and $\Delta (E + ZPE)$ (298K)/(kcal·mol⁻¹)), enthalpies (ΔH (298K)/(kcal·mol⁻¹)), entropy (S/(cal·mol⁻¹·K⁻¹)), and free energies (ΔG (298K)/(kcal·mol⁻¹)) for the favorable routes of the CH₂OO + (H₂O)_n (n = 1-4) reaction^a

.

Species	ZPE	ΔE	ΔG	S	$\Delta(E + ZPE)$	ΔH
$CH_2OO + H_2O$	33.0	0.0	0.0	104.6	0.0	0.0
CH ₂ OO····H ₂ O	35.4	-7.5	3.4	74.0	-5.0	-5.7
TS_WM	35.4	0.0	12.1	66.5	2.5	0.7
HOCH ₂ OOH	38.0	-47.7	-33.5	69.2	-42.7	-44.1
$CH_2OO + (H_2O)_2$	48.6	0.0	0.0	128.8	0.0	0.0
$CH_2OO\cdots(H_2O)_2-a_1$	51.3	-13.9	-0.1	88.2	-11.2	-12.2
TS_WD1a ₁	51.1	-9.5	5.9	77.3	-7.0	-9.4
IMF_WD1a ₁	54.0	-51.3	-33.7	82.6	-45.9	-47.5
$HOCH_2OOH + H_2O$	51.4	-42.7	-36.4	114.2	-39.9	-40.7
$CH_2OO + (H_2O)_3$	65.1	0.0	0.0	140.0	0.0	0.0
CH ₂ OO····(H ₂ O) ₃ -a ₁	67.2	-10.2	2.5	102.6	-8.2	-8.6
TS_WT1a ₁	65.5	-3.9	8.0	96.8	-3.5	-4.9
IMF_WT1a ₁	69.8	-51.0	-34.8	97.9	-46.3	-47.3
CH ₂ OO…(H ₂ O) ₃ -b ₁	66.9	-9.9	1.9	106.0	-8.1	-8.2
TS_WT2b_1	65.8	-6.5	4.0	106.6	-5.8	-5.9
IM_WT3b_1	67.0	-13.2	-1.0	104.0	-11.4	-11.8
TS_WT3b_1	66.5	-8.4	5.8	90.2	-7.0	-9.1
IMF_WT3b ₁	69.8	-51.0	-34.8	97.9	-46.3	-47.3
$HOCH_2OOH + (H_2O)_2$	67.0	-37.8	-35.7	138.4	-36.0	-36.1
$CH_2OO + (H_2O)_4$	81.6	0.0	0.0	151.5	0.0	0.0
$CH_2OO\cdots(H_2O)_4-a_1$	82.9	-9.9	0.8	120.5	-8.6	-8.4
TS_WQ1a ₁	81.6	-2.4	9.6	106.9	-2.4	-3.7
IMF_WQ1a ₁	85.4	-47.1	-32.8	114.8	-43.4	-43.8
$CH_2OO\cdots(H_2O)_4$ -b ₁	83.0	-10.3	1.5	116.9	-8.9	-8.8
TS_WQ2b_1	82.5	1.6	13.2	113.1	2.5	1.8
IM_WQ3b ₁	82.6	-9.1	1.1	121.2	-8.2	-7.9
TS_WQ3b_1	79.2	6.2	16.5	100.7	3.7	1.4
IMF_WQ3b_1	85.8	-49.0	-33.5	110.8	-44.9	-45.6
$HOCH_2OOH + (H_2O)_3$	83.6	-35.2	-33.0	149.6	-33.3	-33.6

^{*a*} ZPE and S values obtained at B3LYP/6-311+G(2*d*,2*p*) level of theory; The energy values are obtained at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level whereas the *H* and *G* corrections are taken from the B3LYP/6-311+G(2*d*,2*p*) level

Fig. S4 Schematic energy diagrams for the unfavorable routes of the $CH_2OO + (H_2O)_2$ reaction at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level

Fig. S5 Schematic energy diagrams for the unfavorable routes of the $CH_2OO + (H_2O)_3$ reaction at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level

Fig. S6 Schematic energy diagrams for the unfavorable routes of the $CH_2OO + (H_2O)_4$ reaction at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2*d*,2*p*) level

Born-Oppenheimer molecular dynamics simulations

To examined the reaction between CH₂OO and $(H_2O)_n$ (n = 1-3) at the gas phase using the BOMD simulations based on the DFT method employed in the CP2K¹ program package. The atomic forces were calculated within the DFT framework using the BOMD simulation. To avoid the effects of initial configurations, we only choose the $CH_2OO\cdots(H_2O)_n$ (n = 1-3) complex with the largest concentration and stabilizing energy were produced by the TGmin program. A cubic simulation box of side 35 Å was used. The resulting box size was found to be large enough to eliminate any interaction between the adjacent periodic images. The system was fully relaxed using a DFT method preceding the BOMD simulations, where the exchange and correlation interaction is treated with the Becke-Lee-Yang-Parr (BLYP)^{2,3} functional. To account for the weak dispersion interactions (BLYP-D3), the Grimme's dispersion correction method^{4,5} was applied. The valence and the core electrons were treated by a double-ζ Gaussian basis set combined with an auxiliary basis set⁶ and the Goedecker-Teter-Hutter (GTH) norm-conserved pseudopotentials.⁷ For the plane-wave basis set, an energy cutoff of 280 Rydberg was used while a 40 Rydberg cutoff was used for the Gaussian basis set. The BOMD (BLYP-D3) simulation was performed in the constant volume and temperature ensemble (NVT) and the constant energy and volume ensemble (NVE), accompanied by the Nose-Hoover chain method for controlling the temperature (300 K) of the system. The integration step is set as 1 fs, which has been previously shown to attain sufficient energy conservation for the water system.⁸⁻¹³

Reference

- J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.*, 2005, 167, 103-128.
- 2. D. Becke, Phys. Rev. A, 1988, 38, 3098.
- 3. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 4. S. Grimme, J. Comput. Chem., 2004, 25, 1463-1473.
- 5. S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- 6. S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B, 1996, 54, 1703.
- 7. C. Hartwigsen, S. Goedecker and J. Hutter, Phys. Rev. B, 1998,58, 3641
- 8. J. Zhong, M. Kumar, J. S. Francisco and X. C. Zeng, Acc. Chem. Res., 2018, 51, 1229-1237.
- 9. C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169.
- L. Li, M. Kumar, C. Q. Zhu, J. Zhong, J. S. Francisco and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 1816-1819.
- 11. J. Zhong, M. Kumar, C. Q. Zhu, J. S. Francisco and X. C. Zeng, Angew. Chem., Int. Ed., 2017, 56, 7740-7744.
- 12. M. Kumar, J. Zhong, X. C. Zeng and J. S. Francisco, Chem. Sci., 2017, 8, 5385-5391.
- 13. M. Kumar, J. Zhong, X. C. Zeng and J. S. Francisco, J. Am. Chem. Soc., 2018, 140, 4913-4921.

Fig. S7 The trajectories of BOMD simulation combined with NVT ensemble for the the favorable channels of the gas phase hydrolysis reaction of CH_2OO with $(H_2O)_n$ (n = 1-3)

Fig. S8 The trajectories of BOMD simulation combined with NVE ensemble for the the favorable channels of the gas phase hydrolysis reaction of CH_2OO with $(H_2O)_n$ (n = 1-3)

Above BOMD simulations results of the NVE simulation results show that the CH₂OO + H₂O and CH₂OO + (H₂O)₂ reactions will not occur within the time scale of 100 ps. However, the NVE simulation results show that the CH₂OO + (H₂O)₃ reaction can be completed at 7.0 ps. This difference may be due to the additional water molecules increasing the stability of CH₂OO in the atmosphere. These results probably support that the gas phase reaction of CH₂OO + (H₂O)₃ reaction is not negligible in the atmosphere. Besides, the results of the NVT simulation show that all the favorable channels involved in the reaction of CH₂OO and (H₂O)_n (*n* = 1-3) cannot react on a time scale of 100 ps. This is slower by 2-3 orders of magnitude than that at the air/water interface reported by Zhu *et al.*^{39,} indicating that the gas phase reaction of CH₂OO with (H₂O)_n (*n* = 1-3) may be harder to occur as compared with its hydrolysis at the air/water interface.

1. C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169.

Fig. S9 Schematic energy diagrams for the favorable channels of the $CH_2OO + (H_2O)_n$ (n = 2-4) reactions starting from geometric isomers of $CH_2OO \cdots (H_2O)_n$ (n = 2-4) complexes at the CCSD(T) -F12a/cc-pVDZ-F12//B3LYP/6-311+G(2d,2p) level

Catal at	Rate Constant		Temperature(K)					
Catalyst	Kate Constant.	290	298	300	310	320		
Channel	K _{eq}	7.94E-21	5.84E-21	5.42E-21	3.80E-21	2.72E-21		
Channel	k _{uni}	2.82E+04	4.14E+04	4.54E+04	7.08E+04	1.07E+05		
K_WM1	k _b	2.24E-16	2.42E-16	2.46E-16	2.69E-16	2.92E-16		
D. (1	K _{eq}	3.11E-20	2.02E-20	1.82E-20	1.11E-20	6.95E-21		
Path	k _{uni}	3.21E+08	3.69E+08	3.81E+08	4.47E+08	5.19E+08		
K_wD1a ₁	k _b	9.96E-12	7.45E-12	6.94E-12	4.95E-12	3.61E-12		
Channel	K _{eq}	1.78E-21	1.25E-21	1.15E-21	7.65E-22	5.23E-22		
	k _{uni}	3.21E+08	3.69E+08	3.81E+08	4.47E+08	5.19E+08		
K_WD2	k _b	5.69E-13	4.61E-13	4.38E-13	3.42E-13	2.72E-13		
Channal	K _{eq}	9.18E-22	7.74E-22	7.43E-22	6.12E-22	5.12E-22		
	k _{uni}	6.76E+03	9.51E+03	1.03E+04	1.53E+04	2.21E+04		
K_WD5	k _b	6.21E-18	7.36E-18	7.67E-18	9.36E-18	1.13E-17		
Channal	K _{eq}	5.25E-23	4.79E-23	4.69E-23	4.23E-23	3.85E-23		
	k _{uni}	6.76E+03	9.51E+03	1.03E+04	1.53E+04	2.21E+04		
K_WD4	k _b	3.55E-19	4.56E-19	4.84E-19	6.47E-19	8.51E-19		
Dath	K _{eq}	4.25E-21	2.92E-21	2.67E-21	1.73E-21	1.15E-21		
	k _{uni}	7.82E+08	9.42E+08	9.85E+08	1.22E+09	1.49E+09		
K_W11a ₁	k _b	3.33E-12	2.75E-12	2.63E-12	2.11E-12	1.72E-12		
Dath	K _{eq}	1.17E-20	8.22E-21	7.54E-21	5.00E-21	3.40E-21		
	$k_{ m uni}{}^{ m a}$	6.57E+07	7.60E+07	7.88E+07	9.31E+07	1.09E+08		
K_W1201	k _b	7.71E-13	6.25E-13	5.94E-13	4.65E-13	3.70E-13		
Channel	K _{eq}	4.50E-23	3.74E-23	3.58E-23	2.89E-23	2.37E-23		
	k _{uni}	7.82E+08	9.42E+08	9.85E+08	1.22E+09	1.49E+09		
K_W15	k _b	3.52E-14	3.52E-14	3.52E-14	3.53E-14	3.53E-14		
Channel	K _{eq}	2.13E-20	1.53E-20	1.41E-20	9.65E-21	6.75E-21		

Table S4 Rate constants (cm³·molecules⁻¹·s⁻¹) for the CH₂OO + (H₂O)_n (n = 1-4) reaction within the temperature range of 290-320 K

	k _{uni}	6.57E+07	7.61E+07	7.88E+07	9.32E+07	1.09E+08
	k _b	1.40E-12	1.17E-12	1.11E-12	8.99E-13	7.34E-13
Channel	K _{eq}	1.81E-20	1.32E-20	1.22E-20	8.51E-21	6.07E-21
D WT5	k _{uni}	5.22E+05	7.24E+05	7.83E+05	1.14E+06	1.63E+06
K_W13	k _b	9.43E-15	9.55E-15	9.58E-15	9.73E-15	9.88E-15
Channel	K _{eq}	7.48E-23	5.85E-23	5.51E-23	4.14E-23	3.18E-23
D WT6	k _{uni}	5.22E+05	7.24E+05	7.83E+05	1.14E+06	1.63E+06
K_W10	k _b	3.91E-17	4.23E-17	4.31E-17	4.74E-17	5.18E-17
Deth	K _{eq}	5.35E-21	4.09E-21	3.83E-21	2.81E-21	2.11E-21
Pain P WO1a	k _{uni}	2.87E+07	3.38E+07	3.52E+07	4.25E+07	5.08E+07
K_wQ1a ₁	k _b	1.54E-13	1.38E-13	1.35E-13	1.20E-13	1.07E-13
Deth	K _{eq}	1.71E-20	1.25E-20	1.16E-20	8.12E-21	5.82E-21
Pain P WO2h	k _{uni}	6.41E+01	9.54E+01	1.05E+02	1.67E+02	2.57E+02
K_wQ201	k _b	1.10E-18	1.19E-18	1.22E-18	1.35E-18	1.50E-18
Channel	K _{eq}	6.60E-21	4.67E-21	4.29E-21	2.87E-21	1.98E-21
D WO2	k _{uni}	2.87E+07	3.38E+07	3.52E+07	4.25E+07	5.08E+07
K_wQ3	k _b	1.89E-13	1.58E-13	1.51E-13	1.22E-13	1.00E-13
Channal	K _{eq}	3.67E-20	2.50E-20	2.28E-20	1.46E-20	9.64E-21
	k _{uni}	6.45E+01	9.60E+01	1.06E+02	1.68E+02	2.58E+02
K_WQ4	k _b	2.37E-18	2.40E-18	2.40E-18	2.45E-18	2.49E-18
Channel	K _{eq}	3.36E-21	2.67E-21	2.53E-21	1.94E-21	1.52E-21
D WO5	k _{uni}	3.75E+05	5.33E+05	5.80E+05	8.72E+05	1.28E+06
ĸ_wQs	k _b	1.26E-15	1.42E-15	1.47E-15	1.69E-15	1.94E-15
Channel	K _{eq}	2.24E-20	1.47E-20	1.33E-20	8.21E-21	5.21E-21
	k _{uni}	3.75E+05	5.33E+05	5.80E+05	8.72E+05	1.28E+06
R_WQ6	k _b	8.40E-15	7.86E-15	7.73E-15	7.15E-15	6.65E-15

 ${}^{a}k_{uni}$ of stepwise Path R_WT2b₁ has been calculated according to the canonical unified statistical model described by $\frac{1}{k_{uni}(WT2b_1)} = \frac{1}{k(TS_WT2b_1)} + \frac{1}{k(TS_WT2b_1)}$, $k(TS_WT2b_1)$ and $k(TS_WT3b_1)$ is

respectively the rate constants for the elementary reaction occurring through TS_WT2b_1 and TS_WT3b_1. 19

Table S5 The high-pressure canonical rate constant k_{total} (cm³·molecule⁻¹·s⁻¹) and the calculated branching ratio (β) k_{-1} (pre-reactive complex IM_WD1a₁ \rightarrow reactants CH₂OO + (H₂O)₂) and k_2 (pre-reactive complex IM_WD1a₁ \rightarrow transition state TS_WD1a₁ \rightarrow products HOCH₂OO + H₂O) within the temperature range of 213-320 K

<i>T</i> (K)	<i>k</i> ₋₁	k_2	$\beta(k_{-1}/k_2)$	$k_{ m total}$	$k_{\text{R}_{\text{WD1al}}}(\text{CVT/SCT})$
213	8.35E+04	3.97E+07	0.00	4.86E-09	4.99E-10
230	6.44E+05	7.02E+07	0.01	1.11E-09	1.68E-10
259	2.20E+07	1.53E+08	0.14	1.38E-10	3.65E-11
280	6.13E+07	2.41E+08	0.25	3.96E-11	1.47E-11
290	3.26E+08	2.91E+08	1.12	2.32E-11	9.96E-12
298	4.22E+08	3.35E+08	1.26	1.56E-11	7.45E-12
300	3.56E+08	3.46E+08	1.03	1.41E-11	6.94E-12
310	4.60E+08	4.07E+08	1.13	8.88E-12	4.95E-12
320	8.25E+08	4.72E+08	1.75	5.73E-12	3.61E-12

The high pressure canonical total rate coefficient for the reaction of CH₂OO with water dimer was calculated using MESMER program.¹ The total rate constant was calculated based on the following scheme. At first, the Criegee intermediate and water dimer are combined together to form intermediate (IM_WD1a₁) and this step is considered to be at equilibrium. The second step is that the formed IM_WD1a₁ undergo unimolecular reaction via transition state. The rate constant for the unimolecular reaction was calculated using RRKM theory with Eckart tunneling correction as implemented in MESMER program. The calculated rate constant were given in Table S5.

 $CH_{2}OO + (H_{2}O)_{2} \ddagger \overset{\&}{k_{1}} \dagger IM_{W}D1_{a1}$ $IM_{W}D1_{a1} \overset{\&}{4} \overset{\&}{9} Products$

Based on the calculated total rate constant, the reaction between Criegee intermediate with water dimer is significantly high compared with Criegee intermediate with water monomer. The calculated rate constant is based on pre-equilibrium condition. The branching ratio (β) is the ratio between k_{-1} and k_2 was calculated and given in Table S5. Based on the branching ratio values, it will be obvious to come to the conclusion that, though the pre-equilibrium condition may not be appropriate at lower temperature (below 290 K) conditions, they become more appropriate when the temperature is above 290 K. Based on above conclusion that the pre-equilibrium approximation is appropriate above 290 K, the calculated temperature range of 290-320 K has been chosen in the whole manuscript.

Reference

D. R. Glowacki, C. H. Liang, C. Morley, M. J. Pilling and S. H. Robertson, J. Phys. Chem. A, 2012, 116, 9545-9560.

<i>T</i> /K	k _{R WD1a1}	k _{R WD1a2}	k _{R WD1a3}	k _{R WD1a4}	$k_{\rm R~WD1}$	$k_{\rm R~WD1a1}/k_{\rm R~WD1}$	$k_{\rm R~WD1a2}/k_{\rm R~WD1}$	$k_{\rm R~WD1a3}/k_{\rm R~WD1}$	$k_{\rm R~WD1a4}/k_{\rm R~WD1}$	
290	9.96E-12	8.82E-12	7.79E-12	1.12E-12	2.77E-11	0.36	0.32	0.28	0.04	
298	7.45E-12	6.42E-12	5.87E-12	8.83E-13	2.06E-11	0.36	0.31	0.28	0.04	
300	6.94E-12	5.91E-12	5.49E-12	8.35E-13	1.92E-11	0.36	0.31	0.29	0.04	
310	4.95E-12	4.53E-12	3.95E-12	6.35E-13	1.41E-11	0.35	0.32	0.28	0.05	
320	3.61E-12	3.09E-12	2.90E-12	4.92E-13	1.01E-11	0.36	0.31	0.29	0.05	
<i>T</i> /K	$k_{\rm R_WT1a1}$	$k_{\rm R_WT1a2}$	$k_{\rm R_WT1}$	$k_{\rm R_WT1a1}/k_{\rm R_WT1}$	$k_{\rm R_WT1a2}/k_{\rm R_WT1}$	$k_{\rm R_WT2b1}$	$k_{\rm R_WT2b2}$	$k_{\rm R_WT2}$	$k_{\rm R_WT2b1}/k_{\rm R_WT2}$	$k_{\rm R_WT2b2}/k_{\rm R_WT2}$
290	3.33E-12	3.22E-12	6.55E-12	0.51	0.49	7.71E-13	4.28E-13	1.20E-12	0.64	0.36
298	2.75E-12	2.83E-12	5.58E-12	0.49	0.51	6.25E-13	3.13E-13	9.38E-13	0.67	0.33
300	2.63E-12	2.75E-12	5.38E-12	0.49	0.51	5.94E-13	2.70E-13	8.64E-13	0.69	0.31
310	2.11E-12	1.61E-12	3.72E-12	0.57	0.43	4.65E-13	2.11E-13	6.76E-13	0.69	0.31
320	1.72E-12	1.15E-12	2.87E-12	0.60	0.40	3.70E-13	1.48E-13	5.18E-13	0.71	0.29
<i>T</i> /K	$k_{\rm R_WQ1a1}$	k _{R_WQ1a2}	$k_{\rm R_WQ1a3}$	$k_{\rm R_WQ1a4}$	$k_{\rm R_WQ1}$	$k_{\rm R_WQ1a1}/k_{\rm R_WQ1}$	$k_{\rm R_WQ1a2}/k_{\rm R_WQ1}$	$k_{\rm R_WQ1a3}/k_{\rm R_WQ1}$	$k_{\rm R_WQ1a4}/k_{\rm R_WQ1}$	
290	1.54E-13	1.16E-13	9.24E-14	3.08E-14	3.93E-13	0.39	0.30	0.23	0.08	
298	1.38E-13	1.04E-13	8.28E-14	2.76E-14	3.52E-13	0.39	0.30	0.23	0.08	
300	1.35E-13	1.01E-13	8.10E-14	2.70E-14	3.44E-13	0.39	0.29	0.24	0.08	
310	1.20E-13	9.00E-14	7.20E-14	2.40E-14	3.06E-13	0.39	0.29	0.24	0.08	
320	1.07E-13	8.03E-14	6.42E-14	2.14E-14	2.73E-13	0.39	0.29	0.24	0.08	
T/K	$k_{\rm R_WQ2b1}$	$k_{\rm R_WQ2b2}$	$k_{\rm R_WQ2b3}$	$k_{\rm R_WQ2b4}$	$k_{\rm R_WQ2}$	$k_{\rm R_WQ2b1}/k_{\rm R_WQ2}$	$k_{\rm R_WQ2b2}/k_{\rm R_WQ2}$	$k_{\rm R_WQ2b3}/k_{\rm R_WQ2}$	$k_{\rm R_WQ2b4}/k_{\rm R_WQ2}$	
290	1.10E-18	3.30E-19	3.40E-19	1.83E-19	1.95E-18	0.56	0.17	0.17	0.09	
298	1.19E-18	4.46E-19	3.76E-19	1.98E-19	2.21E-18	0.54	0.20	0.17	0.09	
300	1.22E-18	6.10E-19	5.88E-19	2.03E-19	2.62E-18	0.47	0.23	0.22	0.08	
310	1.35E-18	8.75E-19	7.40E-19	2.25E-19	3.19E-18	0.42	0.27	0.23	0.07	
320	1.50E-18	1.13E-18	8.00E-19	2.50E-19	3.68E-18	0.41	0.31	0.22	0.07	

Table S6 Rate constants (cm³·molecules⁻¹·s⁻¹) of hydrogen atoms isomerization with the favorable routes for the CH₂OO + (H₂O)_n (n = 2-4) reaction within the temperature range of 290-320 K^a

^a $k_{R_{WD1a1}}$, $k_{R_{WD1a2}}$, $k_{R_{WD1a3}}$ and $k_{R_{WD1a4}}$ is the rate constants for the Path R_WD1a₁, R_WD1a₂, R_WD1a₃ and R_WD1a₄ in Channel R_WD1 (see Fig. S8); $k_{R_{WT1a1}}$, $k_{R_{WT1a2}}$, $k_{R_{WT1a2}}$, $k_{R_{WT1a2}}$, $k_{R_{WT1a2}}$, $k_{R_{WT1a2}}$, $k_{R_{WT1a1}}$, $k_{R_{WT1a2}}$, $k_{R_{WU1a3}}$, $k_{R_{WU2b3}}$, k_{R

<i>T</i> /K	$k_{\rm R_WD2}$	$k_{\rm R_WD3}$	$k_{\rm R_WD4}$	$k_{\rm R_WT3}$	$k_{\rm R_WT4}$	$k_{\rm R_WT5}$	$k_{\rm R_WT6}$	$k_{\rm R_WQ3}$	$k_{\rm R_WQ4}$	$k_{\rm R_WQ5}$	$k_{\rm R_WQ6}$
290	5.69E-13	6.21E-18	3.55E-19	3.52E-14	1.40E-12	9.43E-15	3.91E-17	1.89E-13	2.37E-18	1.26E-15	8.40E-15
298	4.61E-13	7.36E-18	4.56E-19	3.52E-14	1.17E-12	9.55E-15	4.23E-17	1.58E-13	2.40E-18	1.42E-15	7.86E-15
300	4.38E-13	7.67E-18	4.84E-19	3.52E-14	1.11E-12	9.58E-15	4.31E-17	1.51E-13	2.40E-18	1.47E-15	7.73E-15
310	3.42E-13	9.36E-18	6.47E-19	3.53E-14	8.99E-13	9.73E-15	4.74E-17	1.22E-13	2.45E-18	1.69E-15	7.15E-15
320	2.72E-13	1.13E-17	8.51E-19	3.53E-14	7.34E-13	9.88E-15	5.18E-17	1.00E-13	2.49E-18	1.94E-15	6.65E-15
<i>T</i> /K	v_{WD2}/v_{WD1}	v_{WD3}/v_{WD1}	$v_{\rm WD4}/v_{\rm WD1}$	v_{WT3}/v_{WT1}	v_{WT4}/v_{WT1}	v_{WT5}/v_{WT1}	$v_{\rm WT6}/v_{\rm WT1}$	v_{WQ3}/v_{WQ1}	v_{WQ4}/v_{WQ1}	v_{WQ5}/v_{WQ1}	v_{WQ6}/v_{WQ1}
290	2.05E-02	2.24E-07	1.28E-08	5.37E-03	2.14E-01	1.44E-03	5.97E-06	4.81E-01	6.03E-06	3.21E-03	2.14E-02
298	2.24E-02	3.57E-07	2.21E-08	6.31E-03	2.10E-01	1.71E-03	7.58E-06	4.49E-01	6.82E-06	4.03E-03	2.23E-02
300	2.28E-02	3.99E-07	2.52E-08	6.54E-03	2.06E-01	1.78E-03	8.01E-06	4.39E-01	6.98E-06	4.27E-03	2.25E-02
310	2.43E-02	6.64E-07	4.59E-08	9.49E-03	2.42E-01	2.62E-03	1.27E-05	3.99E-01	8.01E-06	5.52E-03	2.34E-02
320	2.69E-02	1.12E-06	8.43E-08	1.23E-02	2.56E-01	3.44E-03	1.80E-05	3.66E-01	9.12E-06	7.11E-03	2.44E-02

Table S7 Rate constants (cm³·molecules⁻¹·s⁻¹) and rate ratio for the unfavorable routes of the CH₂OO + (H₂O)_n (n = 2-4) reaction within the temperature range of 290-320 K^a

^a k_R wD2, k_R wD3, k_R wD4, k_R wT3, k_R wT3, k_R wT5, k_R wT6, k_R wO3, k_R wO4, k_R wO5, R WT4, R WT5, R WT6, R WT5, R WT6, R W R_WQ3, R_WQ4 and R_WQ5(see Fig. S4-S6), respectively; v_{WD2}/v_{WD1}, v_{WD3}/v_{WD1} and v_{WD4}/v_{WD1} is respectively the relative rate of Channels R_WD2, R_WD3 and R_WD4 to Channel R_WD1; vwt3, vwt4, vwt4, vwt4, vwt4, vwt5, vwt1 and vwt6, vwt1 is respectively the relative rate of Channels R WT3, R WT4, R WT5 and R WT6 to Channel R WT1; vwt4, R WQ3, R WQ5 R_WQ6 R_WQ1. vwQ6/vwQ1a1is respectively the relative rate of Channels R WQ4, and to Channel

<i>T</i> (K)	20% RH	40% RH	60% RH	80% RH	100% RH
			[H ₂ O]		
290	9.56×10 ¹⁶	1.91×10 ¹⁷	2.87×10 ¹⁷	3.82×10 ¹⁷	4.78×10 ¹⁷
298	1.55×10 ¹⁷	3.09×10 ¹⁷	4.64×10 ¹⁷	6.18×10 ¹⁷	7.73×10 ¹⁷
300	1.72×10 ¹⁷	3.43×10 ¹⁷	5.15×10 ¹⁷	6.86×10 ¹⁷	8.58×10 ¹⁷
310	2.92×10 ¹⁷	5.84×10 ¹⁷	8.77×10 ¹⁷	1.17×10^{18}	1.46×10 ¹⁸
320	4.70×10 ¹⁷	9.40×10 ¹⁷	1.41×10 ¹⁸	1.88×10^{18}	2.35×10 ¹⁸
		[($(H_2O)_2]$		
290	2.36×10 ¹³	9.46×10 ¹³	2.13×10 ¹⁴	3.78×10 ¹⁴	5.91×10 ¹⁴
298	5.44×10 ¹³	2.18×10 ¹⁴	4.90×10 ¹⁴	8.70×10 ¹⁴	1.36×10 ¹⁵
300	6.50×10 ¹³	2.60×10 ¹⁴	5.85×10 ¹⁴	1.04×10 ¹⁵	1.62×10 ¹⁵
310	1.63×10 ¹⁴	6.52×10 ¹⁴	1.47×10 ¹⁵	2.60×10 ¹⁵	4.06×10 ¹⁵
320	3.71×10 ¹⁴	1.48×10 ¹⁵	3.33×10 ¹⁵	5.92×10 ¹⁵	9.24×10 ¹⁵
		[($(H_2O)_3]$		
290	1.51×10 ¹¹	1.21×10^{12}	4.09×10 ¹²	9.68×10 ¹²	1.89×10 ¹³
298	3.83×10 ¹¹	3.06×10 ¹²	1.03×10 ¹³	2.45×10 ¹³	4.78×10 ¹³
300	4.67×10 ¹¹	3.73×10 ¹²	1.26×10 ¹³	2.98×10 ¹³	5.82×10 ¹³
310	1.29×10 ¹²	1.03×10 ¹³	3.47×10 ¹³	8.22×10 ¹³	1.60×10 ¹⁴
320	3.14×10 ¹²	2.51×10 ¹³	8.46×10 ¹³	2.00×10 ¹⁴	3.91×10 ¹⁴
		[((H ₂ O) ₄]		
290	1.40×10 ¹⁰	2.23×10 ¹¹	1.13×10 ¹²	3.57×10 ¹²	8.72×10 ¹²
298	3.68×10 ¹⁰	5.89×10 ¹¹	2.98×10 ¹²	9.42×10 ¹²	2.30×10 ¹³
300	4.54×10 ¹⁰	7.26×10 ¹¹	3.67×10 ¹²	1.16×10 ¹³	2.83×10 ¹³
310	1.30×10 ¹¹	2.09×10 ¹²	1.06×10 ¹³	3.33×10 ¹³	8.11×10 ¹³
320	3.25×10 ¹¹	5.19×10 ¹²	2.62×10 ¹³	8.29×10 ¹³	2.02×10 ¹⁴

Table S8 Calculated concentration of water clusters (in molecule \cdot cm⁻³) within the temperature range of 290-320 K at different relative humidity (RH) at the ground level of the Earth's atmosphere^a

^a The values are reported from reference (*J. Phys. Chem. A*, 2013, **117**, 10381-10396.).

RH	<i>T</i> (K)	$v_{\rm WD1}/v_{\rm WM1}$	$v_{\rm WT1}/v_{\rm WM1}$	v_{WQ1}/v_{WM1}
	290	30.53	0.05	0.00026
	298	29.88	0.06	0.00035
20%	300	29.50	0.06	0.00037
	310	29.26	0.06	0.00051
	320	27.30	0.07	0.00065
	290	61.25	0.19	0.0020
	298	60.06	0.23	0.0028
40%	300	59.16	0.24	0.0030
	310	58.52	0.24	0.0041
	320	54.46	0.26	0.0052
	290	91.78	0.42	0.0069
	298	89.89	0.51	0.0093
60%	300	88.66	0.54	0.0100
	310	87.86	0.55	0.0137
	320	81.69	0.59	0.0174
	290	122.37	0.74	0.016
	298	119.83	0.91	0.022
80%	300	118.32	0.95	0.024
	310	116.48	0.97	0.032
	320	108.92	1.05	0.041
	290	152.89	1.16	0.032
	298	149.77	1.43	0.043
100%	300	147.36	1.48	0.046
	310	145.76	1.52	0.063
	320	136.00	1.64	0.080

Table S9 The relative rate for the hydrolysis of CH_2OO with $(H_2O)_n$ (n = 1-4) at different relative humidity $(RH)^a$

^{*a*} v_{WD1}/v_{WM1} , v_{WT1}/v_{WM1} and v_{WQ1}/v_{WM1} is respectively the relative rate of Channels R_WD1, R_WT1 and R_WQ1 to Channel R_WM1.

RH	<i>T</i> (K)	$v_{\rm WM1}/v_{\rm total}$	$v_{\rm WD1}/v_{\rm total}$	$v_{\rm WT1}/v_{\rm total}$	v_{WQ1}/v_{total}
20%	290	0.03	0.97	0.001	0.000008
	298	0.03	0.97	0.002	0.000011
	300	0.03	0.97	0.002	0.000012
	310	0.03	0.96	0.002	0.000017
	320	0.04	0.96	0.002	0.000023
	290	0.02	0.98	0.003	0.00003
	298	0.02	0.98	0.004	0.00005
40%	300	0.02	0.98	0.004	0.00005
	310	0.02	0.98	0.004	0.00007
	320	0.02	0.98	0.005	0.00009
	290	0.01	0.98	0.004	0.00007
	298	0.01	0.98	0.006	0.00010
60%	300	0.01	0.98	0.006	0.00011
	310	0.01	0.98	0.006	0.00015
	320	0.01	0.98	0.007	0.00021
	290	0.01	0.99	0.006	0.00013
	298	0.01	0.98	0.008	0.00018
80%	300	0.01	0.98	0.008	0.00020
	310	0.01	0.98	0.008	0.00027
	320	0.01	0.98	0.009	0.00037
	290	0.01	0.99	0.007	0.0002
	298	0.01	0.98	0.009	0.0003
100%	300	0.01	0.98	0.010	0.0003
	310	0.01	0.98	0.010	0.0004
	320	0.01	0.98	0.012	0.0006

Table S10 Rate ratios of v_{WM1}/v_{total} , v_{WD1}/v_{total} , v_{WT1}/v_{total} , v_{WQ1}/v_{total} , within the temperature range of 290-320 K at different relative humidity (RH)^a

 $^{a}v_{\text{total}} = v_{\text{WM1}} + v_{\text{WD1}} + v_{\text{WT1}} + v_{\text{WQ1}}$

Table S11 Coordinates	and geometrical s	structures for the	stationary	points in	the favorable	hydrolysis of
CH_2OO with $(H_2O)_n$ (n =	= 1-4) reaction at	the B3LYP/6-31	1+G(2d,2p)	level		

				TS WM					
0	1.79184600	0.03264100	0.01879600	0	1.43920400	-0.38078700	-0.00701200		
Н	1.15741700	-0.70693900	0.10699200	Н	0.54499700	-0.95182700	0.07514700		
Н	2.23545400	-0.10644600	-0.82133000	Н	1.68892300	-0.40506600	-0.93828800		
0	-0.68184300	-1.16736000	0.18575000	0	-0.95091000	-0.94342200	0.16801200		
0	-0.99782500	0.05653600	-0.37878600	0	-0.88340300	0.40398400	-0.37611900		
C	-0.57360700	1.07332700	0.20674100	C	0.05502500	0.99702400	0.24766200		
Н	-0.07143100	0.98717500	1.15940700	Н	0.18944000	0.81980500	1.30604100		
Н	-0.77722500	2.01170700	-0.29160200	Н	0.40736400	1.91674900	-0.20792300		
					CH ₂ OO····(H ₂ O) ₂ -a ₁				
	11/			0	-1.34063700	-1.42789200	-0.08278900		
	HC	DCH ₂ OOH	0.015(5200	Н	-1.93493700	-1.82994400	0.55638700		
0	1.3/952500	-0.59499800	-0.01565300	Н	-1.56041600	-0.46779600	-0.08396300		
H	-1.18002400	-1.22/2/300	-0.260/4100	0	1.15584500	1.19407100	0.24735600		
Н	1./0853600	-0.51936400	-0.91696200	0	1.33459500	-0.00962600	-0.44940300		
0	-1.48364/00	-0.42225700	0.182/3500	C	1.12995300	-1.05793200	0.18913000		
0	-0.61438100	0.57962800	-0.40159600	Н	0.89325100	-1.00526200	1.24268100		
	0.612//000	0.54225200	0.28655500	Н	1.26474200	-1.97724800	-0.36230800		
H	0.44227900	0.52514500	1.36029000	0	-1.53412400	1.29154800	0.04601100		
H	1.10061800	1.46899200	-0.02580400	Н	-0.55487600	1.41337700	0.12176700		
				Н	-1.81292400	1.82965700	-0.69874300		
	Т	S_WD1a ₁		IMF WD1a ₁					
C	-1.30421400	0.45291600	0.11771200	C	-1.37680300	0.32529500	-0.13427100		
Н	-1.98490700	1.09454400	-0.42658800	Н	-1.96408900	0.64408500	-0.99395600		
Н	-1.31468800	0.42591100	1.20037900	Н	-2.01655000	0.05362100	0.70633800		
0	-1.00758700	-0.62333800	-0.49493000	0	-0.68597100	-0.79871400	-0.59996700		
0	-0.21376400	-1.51097000	0.34834600	0	-0.00514900	-1.39172300	0.53773700		
Н	0.98151700	0.90322300	-0.07152500	Н	1.42490800	0.88093300	-0.31412400		
0	1.85952300	-0.20877300	-0.00570300	0	2.15805500	0.29578400	-0.06940600		
Н	2.30416700	-0.43079100	-0.82751500	Н	2.67199300	0.16121400	-0.87008200		
0	0.17335000	1.60270200	-0.03428100	0	-0.52071800	1.39654400	0.22131100		
Н	0.28900300	2.11382400	0.77545800	Н	-0.32188900	1.32773400	1.16006900		
Н	1.05802000	-0.90117600	0.13606100	Н	0.89670900	-1.03449100	0.39998800		
	CH ₂ O	O···(H ₂ O) ₃ -a ₁			Т	S_WT1a1			
Ο	1.80154300	-1.17635600	-0.35204700	0	1.59032900	-1.10412400	-0.55295400		
0	2.13850900	0.11467900	0.03229400	0	1.92442500	0.22624100	-0.07514600		
C	1.55962800	1.05842500	-0.54372400	C	1.07740900	1.10276300	-0.42950200		
Н	0.84431800	0.85762200	-1.33502700	Н	0.42088000	0.88300300	-1.26072500		
Н	1.84377700	2.04853600	-0.21222600	Н	1.37021800	2.12154000	-0.21030400		
0	-0.87890300	1.39447900	0.63952800	0	-0.42825100	1.08768800	0.79085200		
Н	-0.77499700	0.44375700	0.91183600	Н	-0.51440700	-0.02347100	0.88959800		
0	-0.66211300	-1.25077800	0.90417900	0	-0.48997900	-1.34491500	0.79807100		
Н	-1.34991900	-1.40138500	0.23974400	Н	-1.23436800	-1.55852300	0.22158500		
0	-2.77441100	-0.22390100	-0.86533400	0	-2.69633200	0.01120100	-0.70582300		
Н	-2.40253600	0.57151600	-0.44717800	Н	-2.33922100	0.73273200	-0.17340500		
Н	-0.99141800	1.90362600	1.44810000	Н	-0.12669500	1.43428400	1.63804800		
Н	0.19630700	-1.42706700	0.46237900	Н	0.39709600	-1.38941700	0.21465000		

Н	-3.72029700	-0.21214200	-0.67424700	Н	-3.63948500	0.17454800	-0.78244400
IMF_WT1a ₁			CH ₂ OO…(H ₂ O) ₃ -b ₁				
0	-0.62333800	-1.37991600	0.67718900	C	-1.71018200	1.04519600	0.40220700
0	-1.50541700	-0.80299200	-0.32072300	Н	-2.04166300	1.93749000	-0.10959200
C	-1.79416800	0.50377600	0.06047300	Н	-1.15616300	1.04042700	1.33252800
Н	-1.93317800	0.56994400	1.13614900	0	-2.01601700	-0.03423100	-0.13995000
Н	-2.71307000	0.74512000	-0.47727000	0	-1.60336500	-1.20166700	0.47514600
0	-0.77414100	1.44423300	-0.26274600	Н	0.74333800	-0.46380500	-1.19764200
Н	2.19646900	-1.53632100	-1.22260300	0	0.87049000	-1.38843900	-0.93466000
0	1.93204100	-1.33615200	-0.32173400	Н	0.02863100	-1.60312400	-0.48833500
Н	2.13547700	-0.39137200	-0.17020800	Н	1.24748900	2.13875400	-1.18221800
0	1.99898000	1.36987700	0.23345600	Н	1.51486100	1.20090300	0.03507900
Н	1.02800800	1.45080500	0.25528700	0	0.81275500	1.54918500	-0.55704700
Н	-0.72955200	1.52737000	-1.22114600	Н	2.09039600	-0.78840200	0.31826900
Н	0.23923300	-1.41270900	0.20263800	Н	2.59390200	-0.36851100	1.72071500
Н	2.31663800	1.66410400	1.09077800	0	2.59117400	-0.09546100	0.80125600
	Т	S_WT2b ₁			IN	M_WT3b ₁	
C	1.79401800	-1.02337800	0.32530500	C	-1.97184100	0.46934400	0.01290800
Н	2.02821200	-1.89942500	-0.26063000	Н	-2.44088300	1.12215800	-0.70822000
Н	1.40884400	-1.05396300	1.33525400	Н	-1.92412900	0.66925600	1.07376300
0	1.99746500	0.07103300	-0.23518000	0	-1.55894900	-0.61669100	-0.43336300
0	1.70040100	1.22776100	0.47033000	0	-1.00494400	-1.50178700	0.50487700
Н	-0.90586300	1.05113400	-1.17494700	Н	2.05978200	-0.06571100	-0.07926800
0	-1.05698500	1.75428200	-0.51751000	0	-0.18364800	2.16339200	0.07127100
Н	-0.18042400	1.82911400	-0.09030900	Н	-0.11940800	2.80516400	-0.64118300
Н	-0.58422500	-2.10740000	-1.23962000	0	1.58423500	-1.71170400	-0.11973400
Н	-1.36718200	-1.35911400	-0.13927600	Н	1.71317400	-2.26370400	-0.89405200
0	-0.46562700	-1.61042200	-0.42540700	H	0.60920600	-1.71179000	0.06943000
Н	-2.54787300	0.57905000	0.15349700	0	2.21913000	0.90520400	0.00722000
H	-3.15591500	-0.15422800	1.37244700	H	2.79157300	1.00963300	0.77116400
0	-2.85771300	-0.28576600	0.46923700	Н	0.69513900	1.71162300	0.08875200
	Т	S_WT3b ₁			IN	1F_WT3b ₁	
C	1.80102500	0.05504000	-0.11630000	C	-1.79413400	0.50374300	0.06038200
H	2.69575900	0.34723200	0.42390200	Н	-2.71311200	0.74483900	-0.47734300
Н	1.81910000	0.10283000	-1.19766600	H	-1.93299800	0.57040500	1.13604800
0	1.20545700	-0.96003100	0.40588900	0	-1.50544700	-0.80319500	-0.32027700
0	0.26397600	-1.53985800	-0.54954700	0	-0.62302000	-1.37959500	0.67763000
Н	-1.82071900	0.49105800	0.04193600	Н	2.13540500	-0.39122900	-0.17046400
0	0.91669400	1.54668400	0.12130100	0	-0.77414100	1.44404000	-0.26338500
Н	0.99731400	1.77578300	1.05493700	Н	-0.72954700	1.52662500	-1.22183300
0	-2.01459900	-0.96043500	0.23850900	0	1.93199300	-1.33597300	-0.32226400
H	-2.23314000	-1.31410100	1.10294000	Н	2.19608100	-1.53578600	-1.22331200
H	-1.04026500	-1.28621500	-0.02643800	H	0.23938700	-1.41256400	0.20279300
	-1.52359400	1.46310100	-0.16503400		1.99883000	1.36985200	0.23391100
H	-1.85840300	1.68180700	-1.03901700	H	2.31601300	1.66342600	1.09163500
<u>H</u>	-0.14926800	1.47567100	-0.07174500	H	1.02785000	1.45079600	0.25526800
$CH_2OO\cdots(H_2O)_4-a_1$				TS_WQ1a_1			
	1.94372000	1.01875400	-0.66153500		1.68884100	1.02/96000	-0.50100000
н	2.32349400	2.00020400	-0.41590800	H	2.10263900	1.99930200	-0.26513500

Н	1.06827800	0.83575800	-1.27020100	Н	0.96496700	0.89748300	-1.29284400
0	2.59640900	0.06036400	-0.20491700	0	2.40493900	0.04790400	-0.15631900
0	2.14498400	-1.21822000	-0.47671300	0	1.88659700	-1.22437000	-0.60808400
Н	-0.19056500	0.48143000	1.19773800	Н	-0.00134400	0.05783200	0.98851200
0	-0.25527400	1.46171200	1.00325400	0	0.14263200	1.20676200	0.79917200
H	-0.34567600	1.90690700	1.84963600	Н	0.46638200	1.60760300	1.61266800
Н	0.67681800	-1.37848900	0.62941100	Н	0.72931200	-1.37932700	0.35756800
0	-2.48759300	-1.52086900	-0.32371900	0	-2.51292800	-1.38331400	-0.25122100
Н	-2.61757800	-0.58912500	-0.58655300	Н	-2.59299300	-0.42449900	-0.42319900
Н	-2.53210500	-2.03832300	-1.13128400	Н	-2.60230300	-1.81924200	-1.10239400
0	-0.10478800	-1.16291300	1.17783500	0	-0.05308300	-1.19336500	1.01546500
Н	-0.88542400	-1.46394500	0.67620800	Н	-0.89233200	-1.44971300	0.57726500
0	-2.43761000	1.25671600	-0.73851200	0	-2.33962200	1.40195900	-0.47535200
Н	-1.67463000	1.32839700	-0.12961000	Н	-1.52466900	1.53352900	0.04608900
Н	-3.13395700	1.79034800	-0.34806000	Н	-3.01098500	1.96466300	-0.08182000
	IM	IF_WQ1a1			CH ₂ O	O…(H ₂ O) ₄ -b ₁	
C	2.18161600	0.68310600	0.08990200	C	-1.18437600	-0.75780000	-1.12448400
Н	3.07247900	0.91996700	0.67570800	Н	-0.98001900	-1.73161400	-1.54691200
Н	2.25897100	1.06313900	-0.92581600	Н	-0.53493100	0.10516900	-1.22779700
0	2.12525400	-0.70451500	0.10783200	0	-2.25373700	-0.67611300	-0.48727900
0	1.23640100	-1.13304500	-0.95651800	0	-2.57880600	0.52970100	0.10353900
Н	-1.02497600	-2.52171800	1.12930500	Н	0.69021100	1.58415600	0.13765100
0	1.03486900	1.31277100	0.65384000	0	0.79220800	-1.55634700	0.89653300
Н	0.91555900	0.97618500	1.54858300	Н	0.94635000	-2.36609400	1.38891300
Н	0.45926800	-1.46459400	-0.44832100	Н	0.08061800	0.18545300	1.60946800
0	-3.02137300	-0.18550200	0.18788400	0	1.20570500	1.63874600	-0.71067500
Н	-2.54020800	0.62740500	-0.07624300	Н	2.46397000	0.37785900	-0.61792100
H	-3.64585700	-0.36403700	-0.51992700	Η	1.33416700	2.56928600	-0.90741700
0	-1.01507700	-2.05759900	0.28964700	0	-0.23409600	1.09178700	1.46629800
Н	-1.77074900	-1.43063500	0.29893800	Н	-1.14244800	0.98451800	1.10664300
0	-1.44153900	1.95608700	-0.50981400	0	2.92375600	-0.47664600	-0.47127200
H	-0.54705400	1.73620800	-0.18781700	H	1.64611300	-1.30855800	0.48191200
Н	-1.61540900	2.85387500	-0.21678300	H	3.76197900	-0.26240400	-0.05478300
	T	S_WQ2b ₁			IN	1_WQ3b ₁	
C	-2.21863200	1.09279200	0.36722100	C	-2.47031635	-0.47405358	-0.03855765
H	-2.34345900	2.01422800	-0.18956200	H	-3.03684267	-0.08605858	-0.87180112
H	-1.87395900	1.03326100	1.41081900	H	-2.83407448	-0.51327857	0.97772366
0	-2.48713200	0.04813900	-0.28368000	0	-1.37428013	-0.98868845	-0.32685491
0	-2.31680800	-1.15768300	0.39257600	0	-0.65042436	-1.53399683	0.73976902
H	1.76355900	-1.78383500	-0.14718700	H	2.43983700	-0.43766700	-0.20586300
0	0.10364300	1.88692500	-0.24719000	0	-1.69360700	1.86748500	-0.30479700
Н	0.02504800	2.24898700	-1.14068400	H	-1.76432500	2.32125600	-1.14885800
H	0.24261700	-1.22324500	-1.15228700	Н	0.79529700	-1.89613200	0.09290600
0	2.60218200	-1.53613700	0.31145900	0	2.79000500	0.48534700	-0.17042600
H	2.84153600	0.45383700	0.26584500	H 	1.56371900	1.65270900	0.18677600
H	3.32741500	-1.77720800	-0.29131700	H	3.25841200	0.62272700	-0.99712000
	0.06389000	-1.83107100	-0.41346200		1.70881900	-1.98844800	-0.29153600
H	-0.83498100	-1.54615100	-0.09869400	H	2.12498800	-2.71273000	0.18138300
0	2.79583600	1.40309400	0.04049200	0	0.88352700	2.33594500	0.39489400

Н	1.05449800	1.64073000	-0.11160600	Н	-0.75565000	1.99584900	-0.02313400	
Н	3.13630615	1.44841432	-0.85943195	Н	1.12012482	3.08220542	-0.16094464	
TS_WQ3b ₁				IMF_WQ3b ₁				
C	-2.18257900	-0.25945100	0.17606300	C	-2.01420400	0.62072600	-0.45572900	
Н	-3.12913800	-0.20328000	-0.36246900	Н	-2.83836700	0.55380100	-1.17088100	
Н	-2.27146200	-0.31118800	1.26316900	Н	-2.12094500	1.50000700	0.17992900	
0	-1.39458900	-1.19309900	-0.35548900	0	-2.13832600	-0.56337800	0.27620700	
0	-0.35669500	-1.45395400	0.65567000	0	-1.15884900	-0.54377900	1.34808900	
Н	2.16758100	-0.53163400	-0.14191700	Н	1.61357500	-1.32891600	-0.32837100	
0	-1.65732400	1.24233900	-0.19860100	0	-0.76725200	0.74381900	-1.11280100	
Н	-1.91771900	1.33410100	-1.13437400	Н	-0.46125600	-0.14513900	-1.35312200	
Н	0.62647700	-1.59016800	0.09140500	Н	-0.43344500	-1.04149900	0.91709700	
0	2.51588000	0.58590300	0.24590500	0	2.99573700	-0.32118600	0.04645600	
Н	1.37171300	1.46763500	0.04508600	Н	2.52288900	0.52612800	0.20807600	
Н	3.05547700	0.85926200	-0.51206700	Н	3.68190200	-0.13042300	-0.59751400	
0	1.76109300	-1.54664300	-0.47121000	0	0.70394600	-1.68520500	-0.45324200	
Н	2.22713200	-2.23722400	0.04271000	Н	0.78325800	-2.63590800	-0.56279900	
0	0.50397800	2.15371400	-0.00032500	0	1.33380400	1.81968000	0.42213300	
Н	-0.61722300	1.68600800	-0.07905200	Н	0.56611300	1.51477500	-0.10235800	
Н	0.61877414	2.65115586	-0.81392459	Н	1.70594426	2.53756291	-0.09806395	