Electronic Supplementary Information to:

Formation of resonances and anionic fragments upon electron attachment to benzaldehyde

J. Ameixa,^{ab} E. Arthur-Baidoo,^a J. Pereira-da-Silva^b, M. Ryszka^c, I. Carmichael^c, L.M. Cornetta^d, M. T. do N. Varella^d, F. Ferreira da Silva^b, S. Ptasińska^{ce} and S. Denifl^a

^aInstitut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria. E-mail: Stephan.denifl@uibk.ac.at

^bAtomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal E-mail:

^cRadiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA

^dInstituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil

^eDepartment of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

1. Formation of anions through dissociative electron attachment to benzaldehyde

Table SI. G4(MP2) thermodynamic thresholds for anionic fragments formed through a single bond cleavage, in eV, at T= 0 K (third column) and T = 298.15 K (fourth column).

hydrogen	$BA + e^- \rightarrow (BA - H)^- + H(9)$	3.21	2.92
elimination	$BA + e^- \rightarrow (BA - H)^- + H(10)$	3.11	2.83
	$BA + e^- \rightarrow (BA - H)^- + H(11)$	3.15	2.86
	$\mathrm{BA} + e^- \to (\mathrm{BA} - \mathrm{H})^- + \mathrm{H}(12)$	2.97	2.68
	$\mathrm{BA} + e^- \to (\mathrm{BA} - \mathrm{H})^- + \mathrm{H}(13)$	3.09	2.80
	$BA + e^- \rightarrow (BA - H)^- + H(14)$	3.28	2.98
oxygen	$BA + e^- \rightarrow (BA - O)^{\bullet -} + O(^{3}P)$	6.31	5.92
elimination	$BA + e^- \rightarrow (BA - O)^{\bullet -} + O(^1D)$	8.33	7.97
	$BA + e^- \rightarrow (BA - O) + O^-$	6.38	6.02
formaldehyde-H	$BA + e^- \rightarrow C_6H_5^- + CHO^{\bullet}$	3.01	2.53
elimination	$BA + e^- \rightarrow C_6H_5^{\bullet} + CHO^-$	3.90	3.38

Table SII. G4(MP2) thermodynamic thresholds for anionic fragments formed through two or three bond cleavages, in eV, at T = 0 K (third colunm) and T = 298.15 K (fourth colunm).

OH•	$BA + e^- \rightarrow (BA - OH)^- + OH(9)^{\bullet}$	6.36	5.95
elimination	$BA + e^- \rightarrow (BA - OH)^- + OH(10)^{\bullet}$	6.14	5.72
	$BA + e^- \rightarrow (BA - OH)^- + OH(11)^{\bullet}$	6.30	5.89
	$BA + e^- \rightarrow (BA - OH)^- + OH(12)^{\bullet}$	6.32	5.89
	$BA + e^- \rightarrow (BA - OH)^- + OH(13)^{\bullet}$	5.83	5.41
	$BA + e^- \rightarrow (BA - OH)^- + OH(14)^{\bullet}$	6.56	6.15
OH-	$BA + e^- \rightarrow (BA - OH)^{\bullet} + OH(9)^-$	6.35	5.93
elimination	$BA + e^- \rightarrow (BA - OH)^{\bullet} + OH(10)^-$	6.30	5.88
	$BA + e^- \rightarrow (BA - OH)^{\bullet} + OH(11)^-$	6.34	5.92
	$BA + e^- \rightarrow (BA - OH)^{\bullet} + OH(12)^-$	6.32	5.90
	$BA + e^- \rightarrow (BA - OH)^{\bullet} + OH(13)^-$	5.15	4.72
	$BA + e^- \rightarrow (BA - OH)^{\bullet} + OH(14)^-$	6.40	5.98
H_2O	$BA + e^- \rightarrow C_7 H_4^{\bullet-} + H(13)OH(10)$	5.14	4.65
elimination	$BA + e^- \rightarrow C_7 H_4^{\bullet-} + H(13)OH(9)/H(13)OH(11)$	5.05	4.58
	$BA + e^- \rightarrow C_7 H_4^{\bullet-} + H(13)OH(12)/H(13)OH(14)$	3.38	2.92
	$BA + e^- \rightarrow C_7 H_4^{\bullet-} + H(14)OH(9)$	5.97	5.49
	$BA + e^- \rightarrow C_7 H_4^{\bullet-} + H(14)OH(10)$	5.54	5.06
	$BA + e^- \rightarrow C_7 H_4^{\bullet-} + H(14)OH(11)$	5.95	5.47
	$BA + e^- \to C_7 H_4^{\bullet-} + H(14)OH(12)$	5.74	5.26
	$BA + e^- \rightarrow C_7 H_4^{\bullet-} + H(12)OH(9)$	5.84	5.36
	$BA + e^- \to C_7 H_4^{\bullet-} + H(12)OH(10)$	5.44	4.96
	$\mathrm{BA} + e^- \to \mathrm{C_7H_4^{\bullet -}} + \mathrm{H}(12)\mathrm{OH}(11)$	5.21	4.74
	$BA + e^- \rightarrow C_7 H_4^{\bullet -} + H(9)OH(10)$	5.13	4.66
	$BA + e^- \to C_7 H_4^{\bullet -} + H(9)OH(11)$	5.61	5.09
	$\mathrm{BA} + e^- \to \mathrm{C_7H_4^{\bullet-}} + \mathrm{H}(10)\mathrm{OH}(11)$	5.12	4.65

2. Shape resonances at low energies (0 ~ 5 eV)

Table SIII. Estimative of positions and (widths) of the shape resonances of benzaldehyde (in eV) obtained by the SMCPP scattering method and the scaled VOEs accordingly to Strnad *et. al*¹.

	π_1^*	π_2^*	π_3^*	π_4^*
SMCPP	-0.48	0.78 (0.005)	2.48 (0.09)	5.74 (0.40)
Scaled VOEs	-0.05	0.77	2.14	4.54

3. Excited states for neutral benzaldehyde (0 ~ 9.5eV)

¹ S. W. Staley and J. T. Strnad, Calculation of the energies of π^* negative ion resonance states by the use of Koopmans' Theorem, *J. Phys. Chem.*, 1994, **98**, 116–121.

3. Resonance position for m/z 78

The resonance positions were determined by fitting the ion signal with Gaussian functions. The software OriginPro 9 was used produce the plots, and a function "Gauss" was used to fit the data, as follows:

$$y = y_0 + \frac{A}{w\sqrt{\frac{\pi}{2}}}e^{-2\frac{(x-x_c)^2}{w^2}}$$

Where y_0 denotes the offset, A is the amplitude, w is the width and x_c represents the centre of the Gaussian function. The figure S3 shows the ion yield for the formation of m/z 78 $C_6H_4D^-$, from d-benzaldehyde. Please note that the intensity is provided in arbitrary units.

Figure S2. Formation of the deuterated phenyl anion, m/z 78 $^{C_6H_4D^-}$, from d-benzaldehyde measured with the Notre Dame instrument. The ion signal was fitted with four gaussians, and the orange line represents the cumulative sum of the gaussians.

		Gaussian 1	Gaussian 2	Gaussian 3	Gaussian 4
y o	Value	0	0	0	0
y o	Standard Error	0	0	0	0
Xc	Value	4.78	6.61224	7.487	8.49876
Xc	Standard Error	0	0	0	0
w	Value	1.39865	0.85197	0.76718	1.41417
w	Standard Error	0	0.01046	0.03066	0.0521
Α	Value	4.5	32.96043	10.86493	14.78188
Α	Standard Error	0	0.37068	0.42456	0.50027
sigma	Value	0.69932	0.42598	0.38359	0.70709
FWHM	Value	1.64678	1.00312	0.90329	1.66506
Height	Value	2.5671	30.86804	11.2997	8.34002
Statistics					
Reduced Chi-Sqr					
0.33605					
Statistics					
Adj. R-Square					
0.99565					

Table SIV. Fitting parameters corresponding to the gaussian functions used to fit the ion signal of m/z 78 $^{\rm C_6H_4D^-}$, from d-benzaldehyde measured with the Notre Dame instrument