Supporting Information

Multimode binding and stimuli responsive displacement of acridine orange dye complexed with \boldsymbol{p}-sulfonatocalix[4/6]arene macrocycles

Mhejabeen Sayed, ${ }^{\text {a,c, }, *}$ Dona M. Tom ${ }^{\text {a }}$ and Haridas Pal ${ }^{\text {b,c,, }}$

Research Centre, Mumbai-400085, India;
${ }^{\mathrm{c}}$ Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.
Fax: (+) 91-22-25505151, E-mail: msayed@barc.gov.in, hpal@barc.gov.in

List of the Contents	Page No.
Figure S1: Job's plots for $\mathrm{AOH}^{+}-\mathrm{SCX} 4$ and $\mathrm{AOH}^{+}-\mathrm{SCX} 6$ systems	S2
Note S1: Binding equation for sequential formation $1: 1$ and $2: 1$ dye to host complexes	S2
Note S2: Simplified binding equation for sequential formation of 1:1 and 2:1 dye to host complexes	S4
Note S3: Analysis of dye displacement results following fluorescence titration Note S3.1: Dye displacement studies and relevant mathematical formulation Note S3.2: Simplified relation for the correlation of fluorescence titration data from dye displacement studies	$\begin{aligned} & \text { S5 } \\ & \text { S5 } \\ & \text { S6 } \end{aligned}$
Figure S2. Dye displacement studies for AOH^{+}-SCX4-AcCh system following ground state absorption and SS fluorescence studies	S8
Figure S3. Dye displacement studies for $\mathrm{AOH}^{+}-\mathrm{SCX} 6-\mathrm{AcCh}$ system following ground state absorption and SS fluorescence studies	S9
Table S1. Comparison of K_{C} values from present study with those reported earlier for the interaction of the competitive binders AD and AcCh with SCXn hosts	S9

Figure S1. Job's plots for (A) $\mathrm{AOH}^{+}-\mathrm{SCX} 4$ system and (B) AOH^{+}-SCX6 system, obtained from the fluorescence changes $\left(\Delta \mathrm{I}_{\mathrm{f}}=\mathrm{I}_{\mathrm{AOH}}{ }^{+} / \mathrm{SCXn}-\mathrm{I}_{\mathrm{AOH}}{ }^{+}\right)$monitored as a function of the mole fraction of the dye ($\mathrm{X}_{\text {dye }}$). Sum of the concentrations of the dye and the host was kept as $10 \mu \mathrm{M}$.

Note S1: Binding equation for sequential formation $1: 1$ and $2: 1$ dye to host complexes

Complexation equilibria for the sequential formation $1: 1$ and $2: 1$ dye to host complexes in a system would be represented as,

$$
\mathrm{D}+\mathrm{H} \stackrel{\mathrm{~K}_{\mathrm{eq}(1)}}{\rightleftharpoons} \mathrm{D} \cdot \mathrm{H}(\mathrm{C} 1) ; \quad \& \quad \mathrm{D}+\mathrm{DH} \stackrel{\mathrm{~K}_{\mathrm{eq}(2)}}{\rightleftharpoons} \mathrm{D}_{2} \cdot \mathrm{H}(\mathrm{C} 2) ;
$$

From mass balance, we have,

$$
\begin{equation*}
[\mathrm{D}]_{0}=[\mathrm{D}]+[\mathrm{C} 1]+2[\mathrm{C} 2] \tag{1}
\end{equation*}
$$

and $\quad[\mathrm{H}]_{0}=[\mathrm{H}]+[\mathrm{C} 1]+[\mathrm{C} 2]$
Considering the two complexation equilibria, we have,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{eq}(1)}=\frac{[\mathrm{C} 1]}{[\mathrm{D}][\mathrm{H}]} \quad \text { and } \quad \mathrm{K}_{\mathrm{eq}(2)}=\frac{[\mathrm{C} 2]}{[\mathrm{D}][\mathrm{C} 1]}=\frac{[\mathrm{C} 2]}{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]^{2}[\mathrm{H}]} \tag{3}
\end{equation*}
$$

Therefore, using mass balance for host (eq. 2) we can express concentration of C 1 as,

$$
\begin{aligned}
{[\mathrm{C} 1] } & \left.=\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]=\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}-[\mathrm{C} 1]-[\mathrm{C} 2]\right\} \\
& =\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{C} 1]-\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{C} 2] \\
& =\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{C} 1]-\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{C} 1]
\end{aligned}
$$

Or, $\quad[\mathrm{C} 1]+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{C} 1]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{C} 1]=\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}$
Or, $\quad[\mathrm{C} 1]=\frac{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}}{\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}}$
Following similar procedure, we can have.

$$
\begin{align*}
{[\mathrm{C} 2]=\mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}][\mathrm{C} 1] } & =\mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}] \frac{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}}{\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}} \\
& =\frac{\mathrm{K}_{\mathrm{eqq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}]_{0}}{\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}} \tag{5}
\end{align*}
$$

Now, using mass balance for the dye (eq. 1), we can write,

$$
[\mathrm{D}]_{0}=[\mathrm{D}]+[\mathrm{C} 1]+2[\mathrm{C} 2]
$$

Or, $\quad[\mathrm{D}]_{0}=[\mathrm{D}]+\frac{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}}{\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}^{2}}+2 \frac{\mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}]_{0}}{\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}}$

Or, $\quad[\mathrm{D}]=[\mathrm{D}]_{0}-\frac{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}}{\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}^{-2}} \frac{\mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}]_{0}}{\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}}$

Or,

$$
\left.\left.\begin{array}{rl}
{[\mathrm{D}]\left\{+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}=[\mathrm{D}]_{0}\{ } & +\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]+
\end{array} \mathrm{K}_{\mathrm{eqq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}\right\}\right)
$$

Or,

$$
\begin{aligned}
{[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]^{2} } & +\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{3}=[\mathrm{D}]_{0}+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]_{0}[\mathrm{D}] \\
& +\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]_{0}[\mathrm{D}]^{2}-\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}-2 \mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}]_{0}
\end{aligned}
$$

Or,

$$
\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{3}+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]^{2}-\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]_{0}[\mathrm{D}]^{2}+2 \mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}]_{0}
$$

$$
+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]_{0}[\mathrm{D}]+[\mathrm{D}]=[\mathrm{D}]_{0}
$$

Or,

$$
\begin{align*}
\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{3}+ & \left.\mathrm{K}_{\mathrm{eq}(1)}\left\{\mathrm{ZK}_{\mathrm{eq}(2)}[\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]_{0}+1\right\} \mathrm{D}\right]^{2} \\
& \left.+\left\{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]_{0}+1\right\} \mathrm{D}\right]-[\mathrm{D}]_{0}=0 \tag{7}
\end{align*}
$$

Eq. 7 can be written in the simplified form as,

$$
\begin{equation*}
\mathrm{a}[\mathrm{D}]^{3}+\mathrm{b}[\mathrm{D}]^{2}+\mathrm{c}[\mathrm{D}]+\mathrm{d}=0 \tag{8}
\end{equation*}
$$

where,

$$
\begin{align*}
& \mathrm{a}=\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)} \tag{8a}\\
& \mathrm{b}=\mathrm{K}_{\mathrm{eq}(1)}\left\{2 \mathrm{~K}_{\mathrm{eq}(2)}[\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]_{0}+1\right\} \tag{8b}\\
& \mathrm{c}=\left\{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]_{0}+1\right\} \tag{8c}
\end{align*}
$$

and $d=-[D]_{0}$
Since eq. 7 (or 8) is a $3^{\text {rd }}$ order equation, solving this equation to obtain the exact solution for [D] at any stage of the titration is a very difficult task. Accordingly, explicit analysis of the observed fluorescence titration data was not possible in this study. Therefore, to get an idea about the relative binding strengths in the studied $\mathrm{AOH}^{+}-\mathrm{SCXn}$ systems, observed titration data for both the dye-host systems were analyzed only approximately, following a simplified mathematical equation, as discussed below in Note S2.

Note S2: Simplified binding equation for sequential formation of $\mathbf{1 : 1}$ and $\mathbf{2 : 1}$ dye to host complexes

For the sequential formation $1: 1$ and $2: 1$ dye to host complexes, we can simply write,

$$
\begin{align*}
& \mathrm{K}_{\mathrm{eq}(1)}=\frac{[\mathrm{C} 1]}{[\mathrm{D}][\mathrm{H}]} \Rightarrow[\mathrm{C} 1]=\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}] \tag{9}\\
& \mathrm{K}_{\mathrm{eq}(2)}=\frac{[\mathrm{C} 2]}{[\mathrm{D}][\mathrm{C} 1]}=\frac{[\mathrm{C} 2]}{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}]^{2}[\mathrm{H}]} \Rightarrow \quad[\mathrm{C} 2]=\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}] \tag{10}
\end{align*}
$$

From the mass balance for the dye in the solution, we have,

$$
\begin{equation*}
[\mathrm{D}]_{0}=[\mathrm{D}]+[\mathrm{C} 1]+2[\mathrm{C} 2]=[\mathrm{D}]+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]+2 \mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}] \tag{11}
\end{equation*}
$$

Now applying a simplified condition that the equilibrium host concentration $[\mathrm{H}]$ is very similar to the total host concentration $[\mathrm{H}]_{0}$ used in the solution, we can write eq. 11 in the simplified form as,

$$
\begin{equation*}
\left.2 \mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{H}]_{0}[\mathrm{D}]^{2}+\left(1+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{H}]_{0}\right) \mathrm{D}\right]-[\mathrm{D}]_{0}=0 \tag{12}
\end{equation*}
$$

And thereby, the free dye concentration [D] in the solution would be given as,

$$
\begin{equation*}
[\mathrm{D}]=\frac{-\left(1+\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{H}]_{0}\right)+\left(1+2 \mathrm{~K}_{\mathrm{eq}(1)}[\mathrm{H}]_{0}+\mathrm{K}_{\mathrm{eq}(1)}^{2}[\mathrm{H}]_{0}^{2}+8 \mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{H}]_{0}[\mathrm{D}]_{0}\right)^{1 / 2}}{4 \mathrm{~K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{H}]_{0}} \tag{13}
\end{equation*}
$$

In the titration experiment, the observed fluorescence intensity at any stage would be the sum of contribution from all the emissive species. Therefore we can write,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{obs}}=\mathrm{I}_{\mathrm{D}}+\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{C} 2}=\mathrm{k}_{\mathrm{D}}[\mathrm{D}]+\mathrm{k}_{\mathrm{C} 1}[\mathrm{C} 1]+\mathrm{k}_{\mathrm{C} 2}[\mathrm{C} 2] \tag{14}
\end{equation*}
$$

Here $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{C} 1}$ and $\mathrm{I}_{\mathrm{C} 2}$ are the intensity contributions from $\mathrm{D}, \mathrm{C} 1$ and C 2 species, respectively. It can be assumed further that the intensity contributions of the respective emissive species would be proportional to their concentrations present in the experimental solution. Therefore, we can write,

$$
\begin{align*}
& \mathrm{I}_{0}=\mathrm{k}_{\mathrm{D}}[\mathrm{D}]_{0}, \quad \mathrm{I}_{\mathrm{C} 1}^{\infty}=\mathrm{k}_{\mathrm{C} 1}[\mathrm{C} 1]_{\infty}=\mathrm{k}_{\mathrm{C} 1}[\mathrm{D}]_{0}, \text { and } \mathrm{I}_{\mathrm{C} 2}^{\infty}=\mathrm{k}_{\mathrm{C} 2}[\mathrm{C} 2]_{\infty}=\mathrm{k}_{\mathrm{C} 2}[\mathrm{D}]_{0} / 2 \\
& \text { Or, } \quad \mathrm{k}_{\mathrm{D}}=\frac{\mathrm{I}_{0}}{[\mathrm{D}]_{0}}, \quad \mathrm{k}_{\mathrm{C} 1}=\frac{\mathrm{I}_{\mathrm{C} 1}^{\infty}}{[\mathrm{D}]_{0}} \text { and } \mathrm{k}_{\mathrm{C} 2}=\frac{2 \mathrm{I}_{\mathrm{C} 2}^{\infty}}{[\mathrm{D}]_{0}} \tag{15}
\end{align*}
$$

Therefore eq. 14 can be rewritten as,

$$
\begin{aligned}
\mathrm{I} & =\mathrm{I}_{0} \frac{[\mathrm{D}]}{[\mathrm{D}]_{0}}+\mathrm{I}_{\mathrm{C} 1}^{\infty} \frac{[\mathrm{C} 1]}{[\mathrm{D}]_{0}}+2 \mathrm{I}_{\mathrm{C} 2}^{\infty} \frac{[\mathrm{C} 2]}{[\mathrm{D}]_{0}} \\
& =\mathrm{I}_{0} \frac{\left([\mathrm{D}]_{0}-[\mathrm{C} 1]-2[\mathrm{C} 2]\right)}{[\mathrm{D}]_{0}}+\mathrm{I}_{\mathrm{DH}}^{\infty} \frac{[\mathrm{C} 1]}{[\mathrm{D}]_{0}}+2 \mathrm{I}_{\mathrm{D}_{2} \mathrm{H}}^{\infty} \frac{[\mathrm{C} 2]}{[\mathrm{D}]_{0}} \\
& =\mathrm{I}_{0}+\left(\mathrm{I}_{\mathrm{DH}}^{\infty}-\mathrm{I}_{0}\right) \frac{[\mathrm{C} 1]}{[\mathrm{D}]_{0}}+2\left(\mathrm{I}_{\mathrm{I}_{2} \mathrm{H}}^{\infty}-\mathrm{I}_{0}\right) \frac{[\mathrm{C} 2]}{[\mathrm{D}]_{0}}
\end{aligned}
$$

Or, $\quad\left(\mathrm{I}-\mathrm{I}_{0}\right)=\left(\mathrm{I}_{\mathrm{DH}}^{\infty}-\mathrm{I}_{0} \frac{) \frac{\mathrm{Cl} 1]}{[\mathrm{D}]_{0}}+2\left(\mathrm{I}_{\mathrm{D}_{2} \mathrm{H}}^{\infty}-\mathrm{I}_{0}\right) \frac{[\mathrm{C} 2]}{[\mathrm{D}]_{0}}}{}\right.$
Or, $\quad \Delta \mathrm{I}=\Delta \mathrm{I}_{\mathrm{C} 1}^{\infty} \frac{\mathrm{K}_{\mathrm{eq}(1)}[\mathrm{D}][\mathrm{H}]_{0}}{[\mathrm{D}]_{0}}+2 \Delta \mathrm{I}_{\mathrm{C} 2}^{\infty} \frac{\mathrm{K}_{\mathrm{eq}(1)} \mathrm{K}_{\mathrm{eq}(2)}[\mathrm{D}]^{2}[\mathrm{H}]_{0}}{[\mathrm{D}]_{0}}$
Here, [D] is to be considered as given by eq. 13. This is the simplified mathematical relation used to fit the fluorescence titration data for the studied dye-host systems just to get an approximate idea about the relative binding strengths between $\mathrm{AOH}^{+}-\mathrm{SCX} 4$ and $\mathrm{AOH}^{+}-\mathrm{SCX} 6$ systems, though the applied approximation in deriving the above relation is not truly valid for the titration data especially at the lower host concentration region.

Note S3: Analysis of dye displacement results following fluorescence titration

Note S3.1: Dye displacement studies and relevant mathematical formulation

In the cases of dye displacement experiments, we need to deal with the independent complex formations of both the dye (D) and the competitive binder (C) with the host (H). In these cases, considering only the very simplest complex formations of D and C with H , we can represent these systems as,

$$
\mathrm{D}+\mathrm{H} \underset{\mathrm{D}}{\rightleftharpoons} \mathrm{DH}(\mathrm{C} 1) \quad \text { and } \quad \mathrm{C}+\mathrm{H} \stackrel{\mathrm{~K}_{\mathrm{C}}}{\rightleftharpoons} \mathrm{CH}
$$

Under this simplified considerations, at any stage of the dye displacement study, the mass balance for the dye (D), competitive binder (C) and host (H) would be given as,

$$
\begin{align*}
& {[\mathrm{C} 1]_{0}=[\mathrm{D}]_{\infty}=[\mathrm{C} 1]+[\mathrm{D}]} \tag{1}\\
& {[\mathrm{C}]_{0}=[\mathrm{C}]+[\mathrm{CH}]} \tag{2}\\
& {[\mathrm{H}]_{0}=[\mathrm{H}]+[\mathrm{C} 1]+[\mathrm{CH}]} \tag{3}
\end{align*}
$$

where $[\mathrm{Cl}]_{0},[\mathrm{D}]_{\infty}$ and $[\mathrm{H}]_{0}$ represent the initial C 1 concentration, total dye concentration displaced finally and total host concentration used in the solution.

For the formation of the C 1 complex, we can write,

$$
\mathrm{K}_{\mathrm{D}}=\frac{[\mathrm{C} 1]}{[\mathrm{D}][\mathrm{H}]}=\frac{[\mathrm{C} 1]}{\left.\left.\{\mathrm{C} 1]_{0}-[\mathrm{C} 1]\right\} \mathrm{H}\right]}
$$

Or,

$$
\begin{equation*}
\left.\left.[\mathrm{C} 1]=\mathrm{K}_{\mathrm{D}}\{\mathrm{C} 1]_{0}-[\mathrm{C} 1]\right\} \mathrm{H}\right]=\mathrm{K}_{\mathrm{D}}[\mathrm{C} 1]_{0}[\mathrm{H}]-\mathrm{K}_{\mathrm{D}}[\mathrm{C} 1][\mathrm{H}] \tag{4}
\end{equation*}
$$

Or, $\quad[\mathrm{C} 1]=\frac{\mathrm{K}_{\mathrm{D}}[\mathrm{C} 1]_{0}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}$
Similarly, For the formation of the CH complex, we can write,

$$
\mathrm{K}_{\mathrm{C}}=\frac{\mathrm{CH}}{[\mathrm{C}][\mathrm{H}]}=\frac{[\mathrm{CH}]}{\left.\left.\{\mathrm{C}]_{0}-[\mathrm{CH}]\right\} \mathrm{H}\right]}
$$

Or, $\quad[\mathrm{CH}]=\mathrm{K}_{\mathrm{C}}\left\{[\mathrm{C}]_{0}-[\mathrm{CH}]\right\}[\mathrm{H}]=\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]-\mathrm{K}_{\mathrm{C}}[\mathrm{CH}][\mathrm{H}]$

Or, $\quad[\mathrm{CH}]=\frac{\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]}$
Therefore, substituting eq. 4 and 5 into eq. 3 we can have,

$$
\begin{align*}
& {[\mathrm{H}]_{0}=[\mathrm{H}]+\frac{\mathrm{K}_{\mathrm{D}}[\mathrm{Cl}]_{0}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}+\frac{\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]}} \\
& \text { Or, } \\
& {[\mathrm{H}]_{0}=\frac{[\mathrm{H}]\left(1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]\right)\left(1+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]\right)+\mathrm{K}_{\mathrm{D}}[\mathrm{C} 1]_{0}[\mathrm{H}]\left(1+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]\right)+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]\left(1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]\right)}{\left(1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]\right)\left(1+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]\right)}} \\
& {[\mathrm{H}]_{0}\left(1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{H}]^{2}\right)=[\mathrm{H}]\left(1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{H}]^{2}\right)} \\
& +\mathrm{K}_{\mathrm{D}}[\mathrm{C} 1]_{0}[\mathrm{H}]+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{C} 1]_{0}[\mathrm{H}]^{2}+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]^{2} \\
& {[\mathrm{H}]_{0}+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{H}]_{0}[\mathrm{H}]^{2}+\left\{\mathrm{K}_{\mathrm{D}}[\mathrm{H}]_{0}+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]_{0}\right\}[\mathrm{H}]=[\mathrm{H}]+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{H}]^{3}+\left\{\mathrm{K}_{\mathrm{D}}+\mathrm{K}_{\mathrm{C}}\right\}[\mathrm{H}]^{2}} \\
& +\left\{\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{C} 1]_{0}+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{C}]_{0}\right\}[\mathrm{H}]^{2}+\left\{\mathrm{K}_{\mathrm{D}}[\mathrm{C} 1]_{0}+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}\right\}[\mathrm{H}] \\
& \mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{H}]^{3}+\left\{\mathrm{K}_{\mathrm{D}}+\mathrm{K}_{\mathrm{C}}+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}\left([\mathrm{C} 1]_{0}+[\mathrm{C}]_{0}-[\mathrm{H}]_{0}\right)\right\}[\mathrm{H}]^{2}+ \\
& +\left\{1+\mathrm{K}_{\mathrm{D}}[\mathrm{C} 1]_{0}+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}-\mathrm{K}_{\mathrm{D}}[\mathrm{H}]_{0}-\mathrm{K}_{\mathrm{C}}[\mathrm{H}]_{0}\right\}[\mathrm{H}]-[\mathrm{H}]_{0}=0 \\
& \mathrm{~K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}[\mathrm{H}]^{3}+\left\{\mathrm{K}_{\mathrm{D}}+\mathrm{K}_{\mathrm{C}}+\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}}\left([\mathrm{C} 1]_{0}+[\mathrm{C}]_{0}-[\mathrm{H}]_{0}\right)\right\}[\mathrm{H}]^{2}+ \tag{6}\\
& +\left\{1+\mathrm{K}_{\mathrm{D}}\left([\mathrm{C} 1]_{0}-[\mathrm{H}]_{0}\right)+\mathrm{K}_{\mathrm{C}}\left([\mathrm{C}]_{0}-[\mathrm{H}]_{0}\right)\right\}[\mathrm{H}]-[\mathrm{H}]_{0}=0
\end{align*}
$$

This is a cubic equation, which can be written in its simple form as,

$$
\begin{equation*}
\mathrm{a}[\mathrm{H}]^{3}+\mathrm{b}[\mathrm{H}]^{2}+\mathrm{c}[\mathrm{H}\}+\mathrm{d}=0 \tag{6a}
\end{equation*}
$$

where, $\quad a=K_{D} K_{C}$
$\mathrm{b}=\left\{\mathrm{K}_{\mathrm{D}}+\mathrm{K}_{\mathrm{C}}+\mathrm{K}_{\mathrm{D}} \mathrm{K}_{\mathrm{C}}\left([\mathrm{C} 1]_{0}+[\mathrm{C}]_{0}-[\mathrm{H}]_{0}\right)\right\}$
$\mathrm{c}=\left\{1+\mathrm{K}_{\mathrm{D}}\left([\mathrm{Cl}]_{0}-[\mathrm{H}]_{0}\right)+\mathrm{K}_{\mathrm{C}}\left([\mathrm{C}]_{0}-[\mathrm{H}]_{0}\right)\right\}$
$\mathrm{d}=-[\mathrm{H}]_{0}$
The discussion above shows that the consideration of only the very simplest complex formations of D and C with H also leads to a cubic equation, which is beyond our scope to solve for an exact solution of $[\mathrm{H}]$. In reality, for the $\mathrm{AOH}^{+}-\mathrm{SCXn}$ systems, not only the DH complexes but also the $\mathrm{D}_{2} \mathrm{H}$ complexes are formed in the solution. Therefore, the true representation of the $\mathrm{AOH}^{+}-\mathrm{SCXn}$ systems will effectively lead to a $4^{\text {th }}$ order equation and thus will make the situation much more difficult to be treated for an exact solution of [H]. Thus, for the analysis of the fluorescence titration data from the dye displacement measurements in the $\mathrm{AOH}^{+}-\mathrm{SCXn}$ systems, we were compelled to apply an extreme approximation to obtain only a reasonable fit to the observed titration data and thus to estimate the binding strengths of the dye and the competitive binder with the SCX4 and SCX6 hosts only roughly for a relative comparison, as are discussed in the next two subsections.

Note S3.2: Simplified relation for the correlation of fluorescence titration data from dye displacement studies

In the dye displacement studies involving $\mathrm{AOH}^{+}-\mathrm{SCXn}$ systems, applying a drastic approximation that the dye binds to the hosts only with a single mode of complexation, i.e. as the C 1 complex
only, as considered in section Note S3.1, and considering that on addition of the reasonably high concentrations of the competitive binder [C$]_{0}$ in the solution, the equilibrium concentration of C 1 complex will become much less than that of CH complex (i.e. $[\mathrm{C} 1] \ll[\mathrm{CH}]$), the mass balance for the host concentration in the solution can be expressed as,

$$
\begin{equation*}
[\mathrm{H}]_{0}=[\mathrm{H}]+[\mathrm{CH}]+[\mathrm{Cl}] \approx[\mathrm{H}]+[\mathrm{CH}] \tag{7}
\end{equation*}
$$

Further, at any stage of the dye displacement studies, the equilibrium concentration of the competitive binder [C] can be considered to be very similar to the total concentration [C] $]_{0}$ of the competitive binder used in the solution. Following the above considerations and expressing the concentration [CH] as given by eq. 5 , we can rewrite eq. 7 as,

$$
[\mathrm{H}]_{0}=[\mathrm{H}]+\frac{\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]}
$$

Or, $\quad[\mathrm{H}]_{0}+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]_{0}[\mathrm{H}]=[\mathrm{H}]+\mathrm{K}_{\mathrm{C}}[\mathrm{H}]^{2}+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}[\mathrm{H}]$
Or $\left.\quad \mathrm{K}_{\mathrm{C}}[\mathrm{H}]^{2}+\left\{1+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}-\mathrm{K}_{\mathrm{C}}[\mathrm{H}]_{0}\right\} \mathrm{H}\right]-[\mathrm{H}]_{0}=0$
This is a quadratic equation and thus can be solved easily. The solution of eq. 8 that provides us a physically meaningful result for equilibrium $[\mathrm{H}]$ concentration at any given concentration of the competitive binder $[\mathrm{C}]_{0}$ is expressed as,

$$
\begin{equation*}
[\mathrm{H}]=\frac{-\left\{1+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}-\mathrm{K}_{\mathrm{C}}[\mathrm{H}]_{0}\right\}+\sqrt{\left\{1+\mathrm{K}_{\mathrm{C}}[\mathrm{C}]_{0}-\mathrm{K}_{\mathrm{C}}[\mathrm{H}]_{0}\right\}^{2}+4 \mathrm{~K}_{\mathrm{C}}[\mathrm{H}]_{0}}}{2 \mathrm{~K}_{\mathrm{C}}} \tag{9}
\end{equation*}
$$

Now considering the actual dye displacement experiments where it is assumed that only C1 type of complexes are formed, there will be only two emissive species in the solution, i.e. the free dye (D) and the C 1 complex. Therefore, the observed fluorescence intensity ($\mathrm{I}_{\mathrm{obs}}$) at any given state of the measurements in the dye displacement studies can be expressed as,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{obs}}=\mathrm{I}_{[\mathrm{C}]_{0}} \frac{[\mathrm{C} 1]}{[\mathrm{C} 1]_{0}}+\mathrm{I}_{[\mathrm{D}]_{\infty}} \frac{[\mathrm{D}]}{[\mathrm{D}]_{\infty}}=\mathrm{I}_{[\mathrm{C} 1]_{0}} \frac{[\mathrm{C} 1]}{[\mathrm{C} 1]_{0}}+\mathrm{I}_{[\mathrm{D}]_{0}} \frac{[\mathrm{D}]}{[\mathrm{C} 1]_{0}} \tag{10}
\end{equation*}
$$

where $\mathrm{I}_{\mathrm{Cl}_{0}}$ is the initial intensity when all the dyes were bound to the host and $\mathrm{I}_{\mathrm{D}_{\infty}}$ is the final intensity when all the dye would be displaced from C 1 as the free dye through the competitive binding of C with the host. Expressing the concentration $[\mathrm{CH}]$ as given by eq. 5, we can write,

$$
\frac{[\mathrm{C} 1]}{[\mathrm{C} 1]_{0}}=\frac{\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}
$$

and

$$
\frac{[\mathrm{D}]}{[\mathrm{D}]_{\infty}}=\frac{[\mathrm{D}]}{[\mathrm{C} 1]_{0}}=1-\frac{[\mathrm{C} 1]}{[\mathrm{C} 1]_{0}}=1-\frac{\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}=\frac{1}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}
$$

Therefore, eq. 10 can be rewritten as,
Or, $\quad I_{\text {obs }}=I_{[C \mathrm{C}]_{0}} \frac{\mathrm{~K}_{\mathrm{D}}[\mathrm{H}]}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}+\mathrm{I}_{[\mathrm{D}]_{0}} \frac{1}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}$
Or,

$$
\mathrm{I}_{\mathrm{obs}}=\frac{\mathrm{I}_{[\mathrm{Cl}]_{0}} \mathrm{~K}_{\mathrm{D}}[\mathrm{H}]+\mathrm{I}_{[\mathrm{D}]_{\mathrm{o}}}}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}
$$

Or,

Or, $\quad\left(\mathrm{I}_{\text {obs }}-\mathrm{I}_{[\mathrm{Cl1}]_{0}}\right)=\left(\mathrm{I}_{[\mathrm{P}]_{e}}-\mathrm{I}_{[\mathrm{Cl1}]_{0}}\right)\left(\frac{1}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}\right)$
Or, $\quad \Delta \mathrm{I}_{\mathrm{f}}=\Delta \mathrm{I}_{\infty}\left(\frac{1}{1+\mathrm{K}_{\mathrm{D}}[\mathrm{H}]}\right)$
where, $\Delta \mathrm{I}_{\mathrm{f}}=\left(\mathrm{I}_{\text {obs }}-\mathrm{I}_{[\mathrm{Cl}]_{0}}\right)$ and $\Delta \mathrm{I}_{\infty}=\left(\mathrm{I}_{[\mathrm{D}]_{\infty}}-\mathrm{I}_{[\mathrm{Cl}]_{0}}\right)$. As the equilibrium host concentration $[\mathrm{H}]$ can be approximately estimated by using eq. 9 , we can evidently fit the fluorescence titration data in the dye displacement studies reasonably at least by using eq. 11 to estimate the approximate binding strengths of the dye and the competitive binder with the SCX4 and SCX6 hosts, for their relative comparisons. In the present analysis we used the K_{D} values similar to the $\mathrm{K}_{\text {eq(2) }}$ values obtained before for the respective $\mathrm{AOH}^{+}-\mathrm{SCXn}$ systems, as the initial reduction in the fluorescence intensity for the starting solution in the dye displacement studies were effectively due to the host assisted dimerization of the dye.

Figure S2. (A) Changes in the absorption spectra for the AOH^{+}-SCX4 system ($7 \mu \mathrm{M}$ dye and $10 \mu \mathrm{M}$ host) with increasing AcCh concentration. [AcCh]/mM for spectra $1-13$ are: $0,0.036,0.108,0.215,0.551,1.22$, $2.23,5.55,12.1,25.0,49.0,77.0$ and 102 , respectively. (B) Changes in the fluorescence spectra of the same $\mathrm{AOH}^{+}-\mathrm{SCX} 4$ system with similarly changing AcCh concentration as in the case of absorption studies. Inset: Intensity changes at 531 nm with the increasing concentration of AcCh . Circles are the experimental data points and continuous curves are the fits to the data following eq. 6 and 7; Red: Considering K_{D} similar to the respective $\mathrm{K}_{\text {eq }(2)}$ value and Blue: Considering K_{C} fixed as the reported value in the literature. $6,1,3,6,72$

Figure S3. (A) Changes in the absorption spectra for the $\mathrm{AOH}^{+}-\mathrm{SCX} 6$ system ($6.9 \mu \mathrm{M}$ dye and $3.6 \mu \mathrm{M}$ host) with increasing AcCh concentration. AcCh$] / \mathrm{mM}$ for spectra $1-13$ are: $0,0.036,0.108,0.215,0.551,1.22$, $2.23,5.55,12.1,25.0,49.0,77.0$ and 102, respectively. (B) Changes in the fluorescence spectra of the same $\mathrm{AOH}^{+}-\mathrm{SCX} 4$ system with similarly changing AcCh concentration as in the case of absorption studies. Inset: Intensity changes at 531 nm with the increasing concentration of AcCh . Circles are the experimental data points and continuous curves are the fits to the data following eq. 6 and 7 ; Red: Considering K_{D} similar to the respective $\mathrm{K}_{\mathrm{eq}(2)}$ value and Blue: Considering K_{C} fixed as the reported value in the literature. ${ }^{6,13,56,72}$

Table S1. Comparison of the K_{C} values from the present study with those reported earlier in the literature for the interaction of the competitive binders AD and AcCh with SCXn hosts.

Chemical Systems	$\mathbf{K}_{\mathbf{C}} / \mathbf{M}^{-1}$ (From the literature; ref. no. as in main Paper)	$\mathbf{K}_{\mathrm{C}} / \mathbf{M}^{-1}$ (With assumption of K_{D} similar to $K_{\text {eq(2) }}$)	K_{C} / M^{-1} (with K_{D} as obtained by fixing K_{C} for AcCh- SCXn cases)
AcCh-SCX4	1.2×10^{5} (ref. 6) 1.0×10^{5} (ref. $13 \& 56$) 5.0×10^{4} (ref. 72)	2.7×10^{3} (Highly underestimated K_{C} value)	1.2×10^{5} (fixed as in ref. 6); (Estimated K_{D} in this case is $6.1 \times 10^{7} \mathrm{M}^{-1}$)
AcCh-SCX6	$7.9 \times 10^{4} \quad$ (ref. 72)	6.8×10^{2} (Highly underestimated K_{C} value)	7.9×10^{4} (fixed as in ref. 72) (Estimated K_{D} in this case is $1.7 \times 10^{8} \mathrm{M}^{-1}$)
AD-SCX4	Not available in the literature	5.5×10^{2}	2.0×10^{4} (Obtained on using K_{D} fixed to $6.1 \times 10^{7} \mathrm{M}^{-1}$, as obtained from the fit of the $\mathrm{AcCh}-\mathrm{AOH}^{+}-$ SCX4 data listed above)
AD-SCX6	Not available in the literature	2.4×10^{2}	1.5×10^{4} (Obtained on using K_{D} fixed to $1.7 \times 10^{8} \mathrm{M}^{-1}$, as obtained from the fit of the $\mathrm{AcCh}-\mathrm{AOH}^{+}-$ SCX6 data listed above)

