Supporting Information

Effects of local geometry distortion at the Al/Al₂Cu interfaces on solute

segregation

Xuemei Zhang ^{a, b}, Yongsheng Zhang ^{* a, b}

* Corresponding author

^a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese

Academy of Sciences, Hefei 230031, China

^b Science Island Branch of Graduate School, University of Science and Technology of

China, Hefei 230026, China

Email: yshzhang@theory.issp.ac.cn

The supercells to simulate small lattice mismatch are pretty large (2.29%: a=28.32 Å and containing 203 atoms; 0.25%: a=39.86 Å and containing 287 atoms). Moreover, for each doping atom (Si, Mg and Zn), there are 64 and 88 non-equivalent substitution sites for the lattice mismatch of 2.29% and 0.25%, respectively. In other words, we need to perform $64\times3=192$ and $88\times3=264$ full geometry relaxations in large supercells for the lattice mismatch of 2.29% and 0.25%, respectively. It is time consuming even using the OpenMX-NCPP-LCAO methodology. Nevertheless, we do the following tests: Using the lattice mismatch of 2.29%, we calculate the segregation energies of Si at Al and Al₂Cu sides in the Al/Al₂Cu semicoherent interface region, and find that the lowest segregation energies of Si at the Al and Al₂Cu side are -0.22 and -0.41 eV, respectively. They are lower than the corresponding segregation energies of Si in the coherent interface region (-0.10 eV and -0.31 eV). This means that the Si concentration in the semicoherent region is higher than that in the coherent interface region.

experimental measurements or using a larger lattice mismatch (4.52% with a smaller supercell). Thus, using the smaller supercell of 4.52% lattice mismatch is enough to efficiently address the Al/Al₂Cu problems and gives rise to the same conclusions as using large supercell of low lattice mismatch.

Fig. S1 Concentrations of Al, Cu, Mg, Si, and Zn as a function of distance from the coherent (a) and semicoherent (b) α -Al/ θ ' matrix-precipitate interfaces after aging at 463 K for 8 h. Al and Cu levels are identified on the left ordinates; Si, Mg, and Zn levels appear on the right. The location of each interface is depicted with a vertical line. (The data are taken from ref. ¹)

Fig. S2 Calculated lattice parameters of bulks [Al, Cu, Al₂Cu (a=b), Si, Mg (a, b₁, b₂, c), Zn (a, b₁, b₂, c)] (a) and formation energy for XAl₃Cu₂ (X=Si, Mg Zn) using LCAO (blue triangles) and PAW (red circles) (b).

Fig. S3 Calculated segregation energies of solutes for Si, Mg and Zn with the position relative to Al/Al_2Cu coherent (a) and semicoherent (b) interfaces using the PAW method. The semi-filled and filled circles represent substitution at Al and Cu sites, respectively. The green (blue, semi-filled black) triangle in (b) represent the segregation energies of Si (Mg) in the Al_i and θ' i layers obtained by further relaxing the LCAO output lowest energy structures using PAW.

Fig. S4 3D and contour on the (001) plane of charge density difference of Si (a, c) and Mg (b, d) at the Al_i layer (Fig. 2b) in the Al/Al₂Cu semicoherent interface using PAW. (The isosurface value is 0.002 eV/bohr³). Yellow and green regions denote charge accumulation and depletion, respectively.

Fig. S5 3D and contour on the (001) plane of charge density difference of Si (a, c) and Mg (b, d) at Al_i layer (Fig. 2b) in the Al/Al₂Cu semicoherent interface by further relaxing the LCAO output lowest energy structures using PAW. (The isosurface value is 0.002 eV/bohr³). Yellow and green regions denote charge accumulation and depletion, respectively.

Semicoherent Interface (a:c=7:5)

Fig. S6 Supercell slab models to simulate the segregation energies of Si (Mg) in the $(010)_{Al}$ || (010)_{θ'} semicoherent interface with a mismatch of 2.29% utilizing LCAO. Large and small spheres represent Al and Cu atoms. Dashed lines mean the $7a_{Al}=5c_{\theta'}$ relationships of the semicoherent interface. The numbers from 1 to 8 represent the substitutional sites for solutes in the Al_i layer.

Semicoherent interface (a:c=10:7)

Fig. S7 Supercell slab models to simulate the segregation energies of Si (Mg) in the $(010)_{Al}$ || $(010)_{\theta'}$ semicoherent interface with a mismatch of 0.25% utilizing LCAO. Large and small spheres represent Al and Cu atoms. Dashed lines mean the $10a_{Al}=7c_{\theta'}$ relationships of the semicoherent interface. The numbers from 1 to 11 represent the substitutional sites for solutes in the Al_i layer.

Table S1 Theoretically (LCAO and PAW) calculated lattice parameters (a, b, c) for Al/Al₂Cu coherent and semicoherent interfaces.

	Coh	Coherent interface			emicol	herent int	erface
	a (Å)	b (Å)	c (Å)	а	a (Å)	b (Å)	c (Å)
PAW	4.04	4.04	35.20	1	11.73	4.06	28.95
LCAO	4.03	4.03	34.80	1	11.75	4.04	28.79

Table S2 Interface spacing (Å) between two phases (Al and Al_2Cu) in the semicoherent interfacewith and without Si (Mg) solute using LCAO and PAW.

	Solute	Clean interface	
Structure	Si (Al _i green dot)	Mg (Al _i blue dot)	
LCAO (Å)	2.22	2.19	2.17
PAW (Å)	2.32	2.23	2.21

Table S3 Calculated segregation energy of solutes (Si, Mg) at the different sites (Fig. S6) in the semicoherent interface with the misfit of 2.29% using LCAO. Al₂ (Al₁) and Al₃ (Al₄) are low1 and low2 structure for solute Si (Mg) in Table 1, respectively.

	Segregation energy at Al _i substitutional sites (eV/atom)							
Solute	Al ₁	Al_2	Al ₃	Al ₄	Al ₅	Al_6	Al ₇	Al ₈
Si	-0.17	-0.20	-0.22	-0.20	-0.19	-0.12	-0.13	-0.12
Mg	-0.35	0.10	0.11	-0.30	0.08	-0.12	-0.27	0.20

	Seg	Segregation energy at Al _i substitutional sites (eV/atom)							
Solute	Al_1	Al_2	Al ₃	Al ₄	Al ₅	Al_6			
Si	-0.22	-0.20	-0.21	-0.24	-0.18	-0.22			
Mg	-0.33	0.13	0.13	-0.31	-0.03	-0.45			
Solute	Al ₇	Al_8	Al ₉	Al_{10}	Al_{11}				
Si	-0.28	-0.19	-0.21	-0.31	-0.13				
Mg	-0.29	0.10	-0.53	-0.30	0.09				

Table S4 Calculated segregation energy of solutes (Si, Mg) at the different sites (Fig. S7) in the semicoherent interface with the misfit of 0.25%. Al₇ (Al₆) and Al₁₀ (Al₉) are low1 and low2 structure for solute Si (Mg) in Table 1, respectively.

1. A. Biswas, D. J. Siegel and D. N. Seidman, Phys. Rev. Lett., 2010, 105, 076102.