Electronic Supplementary Information

Temperature- and pressure-dependent kinetics of the competing C–O bond fission reactions of dimethoxymethane

Leonie Golka, Dennis Gratzfeld, Isabelle Weber^a and Matthias Olzmann*

Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany. E-mail: matthias.olzmann@kit.edu

^a Present address: Laboratoire PC2A, Université de Lille 1 - Bàtiment C11, 59655 Villeneuve dÁscq, France

T/K	<i>p</i> /bar	[DMM] ₀ /mol cm ⁻³	[Ar]/mol cm ⁻³	k_{1+2}/s^{-1}	
1140	0.41	$1.05 imes 10^{-10}$	4.31 × 10 ⁻⁶	5	
1140	0.42	$1.05 imes 10^{-10}$	4.44×10^{-6}	17	
1150	0.36	$9.31\times10^{\text{-}11}$	3.81×10^{-6}	29	
1170	0.43	1.07×10^{10}	4.40×10^{-6}	7	
1190	0.4	9.61×10^{-11}	4.06×10^{-6}	40	
1200	0.42	1.03×10^{-10}	4.22×10^{-6}	7	
1210	0.44	1.06×10^{-10}	4.35×10^{-6}	65	
1230	0.41	9.75×10^{-11}	3.99×10^{-6}	102	
1230	0.41	9.77×10^{-11}	4.01×10^{-6}	191	
1230	0.38	9.19×10^{-11}	3.77×10^{-6}	290	
1240	0.37	8.85×10^{-11}	3.62×10^{-6}	192	
1240	0.4	9.43×10^{-11}	3.86×10^{-6}	296	
1250	0.41	9.52×10^{-11}	3.89×10^{-6}	268	
1250	0.4	9.20×10^{-11}	3.88×10^{-6}	138	
1250	0.4	9.36×10^{-11}	3.84×10^{-6}	274	
1250	0.4	9.41×10^{-11}	3.86×10^{-6}	164	
1260	0.4	9.30×10^{-11}	3.81×10^{-6}	2130	
1270	0.41	9.15×10^{-11}	3.86×10^{-6}	683	
1280	0.43	9.79×10^{-11}	4.01×10^{-6}	626	
1290	0.38	8.71×10^{-11}	3.57×10^{-6}	707	
1300	0.39	8.80×10^{-11}	3.60×10^{-6}	737	
1300	0.38	$8.59\times10^{\text{-}11}$	3.51×10^{-6}	1270	
1300	0.42	9.48×10^{-11}	3.88×10^{-6}	521	
1310	0.4	8.89×10^{-11}	3.64×10^{-6}	1360	
1320	0.41	8.86×10^{-11}	3.74×10^{-6}	1730	

Table S1 Conditions and first-order rate coefficients, k_{1+2} , for the decomposition of DMM at nominal pressures of 0.4 bar and 4.7 bar

1320	0.41	9.12×10^{-11}	3.74×10^{-6}	2220
1330	0.41	9.04×10^{-11}	3.71×10^{-6}	3830
1340	0.4	8.86×10^{-11}	3.62×10^{-6}	1870
1340	0.38	8.33×10^{-11}	3.41×10^{-6}	2000
1360	0.41	8.90×10^{-11}	3.64×10^{-6}	2890
1370	0.4	8.56×10^{-11}	3.50×10^{-6}	1700
1370	0.42	9.09×10^{-11}	3.73×10^{-6}	260
1370	0.39	8.28×10^{-11}	3.39×10^{-6}	3750
1390	0.37	7.80×10^{-11}	3.20×10^{-6}	5390
1400	0.4	8.41×10^{-11}	3.44×10^{-6}	3420
1400	0.38	8.07×10^{-11}	3.30×10^{-6}	6520
1410	0.41	8.33×10^{-11}	3.52×10^{-6}	5260
1420	0.37	7.58×10^{-11}	3.10×10^{-6}	6090
1430	0.37	7.53×10^{-11}	3.08×10^{-6}	7560
1430	0.43	8.91×10^{-11}	3.65×10^{-6}	284
1450	0.39	7.91×10^{-11}	3.24×10^{-6}	8400
1470	0.38	7.49×10^{-11}	3.06×10^{-6}	9550
1470	0.38	7.70×10^{-11}	$3.15 imes 10^{-6}$	8230
1470	0.4	8.02×10^{-11}	3.29×10^{-6}	7470
1470	0.4	7.91×10^{-11}	$3.24\times10^{\text{-}6}$	7840
1500	0.39	7.62×10^{-11}	3.12×10^{-6}	14700
1530	0.39	7.55×10^{-11}	3.09×10^{-6}	14100
1550	0.39	7.47×10^{-11}	$3.05 imes 10^{-6}$	14300
1550	0.41	7.85×10^{-11}	3.22×10^{-6}	14500
1560	0.4	7.55×10^{-11}	3.09×10^{-6}	41800
1160	4.76	1.11×10^{-10}	4.96×10^{-5}	106
1170	4.77	9.07×10^{-11}	4.90×10^{-5}	157
1200	4.71	8.76×10^{-11}	4.74×10^{-5}	318
1200	4.77	8.88×10^{-11}	4.80×10^{-5}	255

1210	4.75	9.26×10^{-11}	4.72×10^{-5}	355
1220	4.74	$1.04\times10^{\text{-}10}$	4.67×10^{-5}	500
1240	4.81	$1.04\times10^{\text{-}10}$	4.68×10^{-5}	681
1250	4.71	1.01×10^{10}	4.52×10^{-5}	973
1250	4.81	$8.60\times10^{\text{-}11}$	4.65×10^{-5}	756
1250	4.68	$8.80\times10^{\text{-}11}$	4.49×10^{-5}	1020
1290	4.81	1.00×10^{10}	4.49×10^{-5}	2120
1300	4.67	9.66×10^{-11}	4.33×10^{-5}	2920
1310	4.63	$7.89\times10^{\text{-}11}$	4.26×10^{-5}	3730
1330	4.72	9.52×10^{-11}	4.27×10^{-5}	5690
1330	4.59	8.16×10^{-11}	4.16×10^{-5}	4520
1350	4.62	7.60×10^{-11}	4.11×10^{-5}	6960
1380	4.76	9.23×10^{-11}	4.14×10^{-5}	9670
1380	4.67	$7.99\times10^{\text{-}11}$	4.08×10^{-5}	9880
1400	4.53	8.66×10^{-11}	$3.88\times10^{\text{-5}}$	17000
1400	4.72	$7.49\times10^{\text{-}11}$	$4.05\times10^{\text{-5}}$	17500
1400	4.57	$7.69\times10^{\text{-}11}$	3.92×10^{-5}	13800
1410	4.71	7.44×10^{-11}	4.02×10^{-5}	15500
1410	4.68	$7.81\times10^{\text{-}11}$	$3.98\times10^{\text{-5}}$	14500
1450	4.65	$7.12\times10^{\text{-}11}$	3.85×10^{-5}	25500
1450	4.67	$7.14 imes 10^{-11}$	3.86×10^{-5}	30900

Figure S1 Comparison of rate coefficient expressions for the C–O bond-fission reactions of DMM at $p \sim 1$ bar; black solid line: $k_{1+2} = k_1 + k_2$ from this work, black dotted line: high-pressure limit $k_1^{\infty} + k_2^{\infty}$ from this work, purple: k_{1+2} from Peukert *et al.* [1], green: k_{1+2} from Marrodán *et al.* [2], orange: k_{1+2} from Vermeire *et al.* [3], red: $k_{1+2+3} = k_1 + k_2 + k_3$ from Sun *et al.* [4], cyan: $k_{1+2+3+4} = k_1 + k_2 + k_3 + k_4$ from Jacobs *et al.* [5].

References

[1] S. Peukert, P. Sela, D. Nativel, J. Herzler, M. Fikri and C. Schulz, *J. Phys. Chem. A*, 2018, **122**, 7559–7571 (ref. [23] of the main text).

[2] L. Marrodán, E. Royo, Á. Millera, R. Bilbao and M. U. Alzueta, *Energy Fuels*, 2015, **29**, 3507–3517 (ref. [9] of the main text).

[3] F. H. Vermeire, H.-H. Carstensen, O. Herbinet, F. Battin-Leclerc, G. B. Marin and K. M. Van Geem, *Combust. Flame*, 2018, **190**, 270–283 (ref. [15] of the main text).

[4] W. Sun, T. Tao, M. Lailliau, N. Hansen, B. Yang and P. Dagaut, *Combust. Flame*, 2018, **193**, 491–501 (ref. [18] of the main text).

[5] S. Jacobs, M. Döntgen, A. B. S. Alquaity, W. A. Kopp, L. C. Kröger, U. Burke, H. Pitsch, K. Leonhard, H. J. Curran and K. A. Heufer, *Combust. Flame*, 2019, **205**, 522–533 (ref. [24] of the main text).

		X	Y	Z
СНОСНОСН	C	0	0	0 930333
	н	-0 710583	0 551249	1 550536
	H	0.710583	-0 551249	1.550536
	$\hat{0}$	0.77856	0.877733	0 165382
	C C	0.77850	1 813257	0.105582
	ч	0 627951	2 404283	0.106607
		-0.02/951	2.404283	1.077670
		0.639367	2.4/090	-1.077079
	П	-0.038307	1.31003/	-1.290932
	0 C	-0.///830	-0.8///33	0.105382
	C	0	-1.813257	-0.566112
	H	-0.695/55	-2.4/096	-1.077679
	H	0.638367	-1.316637	-1.296932
	Н	0.627951	-2.404283	0.106697
CH ₂ OCH ₃	С	-1.197182	0.228141	0.066537
	Н	-1.122285	1.269323	-0.217793
	Н	-2.120306	-0.317099	-0.029403
	0	-0.091787	-0.545475	-0.036932
	С	1.134078	0.169624	0.01265
	Н	1.252195	0.661501	0.978753
	Н	1.929449	-0.554277	-0.129647
	H	1.173867	0.917762	-0.781575
CH	G	0	0	0.00005
CH ₃	C	0	0	0.000005
	H	0.106909	-1.0/0538	-0.00001
	Н	-0.980569	0.442682	-0.00001
	Н	0.87366	0.627853	-0.00001
OCH ₂ OCH ₃	С	-0.750964	-0.453548	0.21654
	Н	-1.327698	-1.344939	-0.064772
	Н	-0.724972	-0.424171	1.326896
	0	-1.421129	0.65014	-0.149479
	0	0.530182	-0.62425	-0.309856
	С	1.438789	0.391561	0.090677
	Н	2.398846	0.147674	-0.351772
	Н	1.115256	1.37154	-0.259189
	Н	1.539196	0.4146934	1.180211
0.CH	C	0.555005	0.000001	0.010700
OCH ₃	C	0.5/598/	0.000001	-0.012/89
	H	1.002502	0.904687	-0.456725
	H	0.867815	-0.000019	1.050778
	H	1.002499	-0.904673	-0.456754
	0	-0.791092	0	-0.007586
H ₂ CO	С	0	0.529073	0
	Н	0.935705	1.112168	0
	Н	-0.935705	1.112167	0
	0	0	-0.674846	0

Table S2 Cartesian coordinates (in Å) of reactants and products in reactions (R1) to (R6) from B2PLYP-D3/def2-TZVPP calculations

	Α	В	С
CH ₃ OCH ₂ OCH ₃	0,3440099	0.10905044	0.10239384
CH ₂ OCH ₃	1.57726483	0.35886593	0.310781
CH ₃	9.63400887	9.63396951	4.81699476
OCH ₂ OCH ₃	0.62629194	0.19549291	0.16621966
OCH ₃	5.292425335	0.93392643	0.928056369
H ₂ CO	9.55219894	1.29926084	1.14369855

Table S3 Rotational constants (in cm⁻¹) of reactants and products in reactions (R1) to (R6) from B2PLYP-D3/def2-TZVPP calculations

Table S4 Harmonic wavenumbers (in cm⁻¹) of reactants and products in reactions (R1) to (R6) from B2PLYP-D3/def2-TZVPP calculations

CH ₃ OCH ₂ OCH ₃	3158.2746, 3158.003, 3095.6578, 3095.3491, 3087.6616, 3032.8787, 3024.7457,
	3023.7175, 1530.5627, 1522.806, 1517.3826, 1502.4537, 1501.7991, 1492.7256,
	1479.6731, 1439.1076, 1345.6172, 1264.9865, 1222.258, 1188.8885, 1187.8252,
	1169.7711, 1146.1054, 1074.4336, 950.9244, 936.9361, 608.0741, 455.1731,
	322.3773, 224.3512, 157.9425, 133.9003, 93.4922
CH ₂ OCH ₃	3293.6975, 3167.8444, 3140.9449, 3099.3261, 3035.2703, 1519.125, 1510.4072,
	1504.5839, 1472.903, 1294.5564, 1262.0484, 1182.977, 1146.775, 968.6832,
	587.0216, 434.3515, 302.2726, 165.1975
CH ₃	3324.7538, 3324.7472, 3143.6574, 1429.3806, 1429.3734, 521.1626
OCH ₂ OCH ₃	3166.0486, 3099.0609, 3020.4636, 2997.6555, 2851.4681, 1525.9739,
	1503.2777, 1487.5821, 1390.5227, 1346.53, 1264.3748, 1193.3927, 1184.8951,
	1123.6383, 1054.8563, 938.6581, 783.3246, 602.1616, 350.113, 190.1323,
	133.6607
OCH ₃	3064.9694, 3020.6753, 2943.2846, 1530.123, 1389.0458, 1386.9819, 1116.4847,
	965.1717, 737.2354
H ₂ CO	2991.6966, 2929.1485, 1790.5879, 1545.3393, 1274.9597, 1208.5899

Table S5 'log p' parameterization of the pressure-dependent rate coefficients k_1 and k_2 in CHEMKIN-PRO format^a

CH3OCH2OCH3=CH3+CH3OCH2O 2.74E+108 -27.94 119635.52 PLOG/1E-3 2.74E+108 -27.94 119635.52 / PLOG/1E-2 7.57E+111 -28.52 125253.35 / PLOG/1E-1 2.52E+113 -28.54 130279.60 / PLOG/4E-1 4.55E+112 -28.08 132480.52 / PLOG/ 1.0 1.422E+111 -27.49 133333.59 / PLOG/ 4.0 6.59E+106 -26.02 133278.13 / PLOG/1E+1 1.81E+102 -24.57 132048.95 / PLOG/1E+2 2.88E+83 -18.94 123350.93 / PLOG/1E+3 8.51E+55 -10.94 107037.16/ CH3OCH2OCH3=CH3O+CH3OCH2 1.13E+108 -28.39 121297.17 PLOG/1E-3 1.13E+108 -28.39 121297.17 / PLOG/1E-2 7.51E+118 -31.07 132923.31 / PLOG/1E-1 3.43E+114 -29.24 133132.81 / PLOG/4E-1 3.69E+114 -28.96 136015.54 / PLOG/ 1.0 4.98E+113 -28.53 137441.66 / PLOG/ 4.0 3.39E+110 -27.35 138466.60 / PLOG/1E+1 7.25E+106 -26.13 138085.96 / PLOG/1E+2 1.66E+90 -21.03 131634.45 / PLOG/1E+3 5.60E+62 -13.00 116148.55 /

^a the notation is as follows:

first line:	reactant(s)=product(s)	dummy	dummy	dummy
next lines:	PLOG/pressure <i>p_j</i>	$B(p_j)$	$n(p_j)$	$C(p_j)$ /

for $k(T, p_j) = B(p_j) T^{n(p_j)} \exp(-C(p_j) / RT)$

units: $[k] = s^{-1}$, $[p_j] = bar$, [T] = K, $[C(p_j)] = cal mol^{-1}$

The rate coefficient k for an arbitrary pressure p is obtained from the following interpolation:

$$\ln k(T, p) = \ln k(T, p_i) + \{\ln k(T, p_{i+1}) - \ln k(T, p_i)\} \frac{\ln p - \ln p_i}{\ln p_{i+1} - \ln p_i}$$

'PLOG' is the CHEMKIN keyword for this kind of representation