# **Supplementary Information**

## The Wetting Behavior of Aqueous Imidazolium Based Ionic Liquids: A Molecular Dynamics Study

Sanchari Bhattacharjee, Sandip Khan\*

Department of Chemical & Biochemical Engineering Indian Institute of Technology Patna, Bihar 801003, India

#### **Section S1: Interaction Energy**

The equilibration of droplet was traced by observing the interaction energy (solid-fluid interaction energy per molecule) to be constant (after graphite sheet being close to the droplet, i.e. after 10 ns see **Figure S1**). It can be observed from **Figure S2**, and **Figure S3** that time required to reach the equilibration is significantly high (about 30-40 ns) for pure ILs compared to that of aqueous IL (about 3-8 ns, see bottom **Figure S3** Furthermore, cations were found to have a larger contribution compare to that of the anions or water in solid-fluid interaction for both the ILs.



Figure S1. Shape evolution during equilibration of aqueous IL droplet.

<sup>\*</sup> Corresponding author: E-mail: <u>skhan@iitp.ac.in</u>



**Figure S2.** Solid-fluid interaction energy per number of molecules for pure ILs (a.) [EMIM][BF<sub>4</sub>] and (b.)[EMIM][NTF<sub>2</sub>].



**Figure S3.** Evolution of various interaction energy for 20wt%ILs (a.) Solid-fluid interaction energy per number of molecule for [EMIM][BF<sub>4</sub>], and corresponding zoomed view from the

selected portion is shown bottom. All energy found nearly constant after the time > 2.5 ns. (b.) Solid-fluid interaction energy per number of molecule for [EMIM][NTF<sub>2</sub>].

### Section S2: System size effect

To investigate the system size effect, we vary the number of water molecules from 2000 to 6000), for 40wt% (ion pair vary accordingly), and analyze the wetting behavior of the droplet by observing the contact angle. **Table S1** shows the contact angle dependency on the droplet size. For all the system size contact angle of [EMIM][BF<sub>4</sub>] droplet always higher than [EMIM][NTF<sub>2</sub>] droplet. No significant change is found in contact angle with system size.

#### Table S1.

Contact

| angle of  | Number of water- | Contact angle (°)         |                          | aqueous   |
|-----------|------------------|---------------------------|--------------------------|-----------|
| ILs with  | molecules        | [EMIM][NTF <sub>2</sub> ] | [EMIM][BF <sub>4</sub> ] | different |
| number    | 2000             | 68 ± 1.1                  | 72 ± 1.3                 | of water  |
| molecules | 3000             | 68 ± 1.6                  | 72 ± 1.6                 | for       |
| 40wt%IL   | 4000             | 69 ± 1.2                  | 73 ± 1.2                 |           |
|           | 6000             | 69 <u>+</u> 1.5           | $73 \pm 1.4$             |           |