Electronic Supplementary Information for

Electronic Structure, Magnetic Anisotropy and Dzyaloshinskii-Moriya Interaction in Janus $Cr_2I_3X_3$ (X = Br, Cl) Bilayers

Fang Zhang,^a Hui Zhang,^b Wenbo Mi^{*,a} and Xiaocha Wang^{*,c}

^aTianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology,

School of Science, Tianjin University, Tianjin 300354, China

^bSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130,

China

^cSchool of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384,

China

^{*}Author to whom all correspondence should be addressed.

E-mail: miwenbo@tju.edu.cn and wangxc@email.tjut.edu.cn

	DFT	DFT-D2	HSE06
<i>a</i> (Å)	6.79	6.69	6.69
<i>d</i> (Å)	4.23	3.39	3.39
$E_{g} (eV)$	0.732	0.761	1.389

Table S1 Lattice constant *a* (Å), interlayer distance *d* (Å) and band gap E_g (eV) of the AA_{up-up} Cr₂I₃Br₃ bilayer obtained from DFT, DFT-D2 and HSE06 functionals.

A. Total DMI parameters d_{tot}

The Dzyaloshinskii-Moriya interaction (DMI) energy can be written as $E_{DM} = d_{12} \cdot (S_1 \times S_2)$, where S_1 and S_2 represent the spins of the nearest neighbor Cr atoms.¹ The DMI vector d_{12} can be expressed as $d_{12} = d_{12} \cdot (z \times u_{12})$, where z is unit vectors pointing along z and u_{12} represents unit vectors pointing from site 1 to site 2. The Cr atoms with chiral spin configuration are labeled in Fig. S1(a). Neglecting the weak interlayer contribution, the DMI energy of atom 3 can be written as

$$E_{3} = \frac{1}{2} [\boldsymbol{d}_{33'} \cdot (\boldsymbol{S}_{3} \times \boldsymbol{S}_{3'}) + \boldsymbol{d}_{32'} \cdot (\boldsymbol{S}_{3} \times \boldsymbol{S}_{2'}) + \boldsymbol{d}_{32''} \cdot (\boldsymbol{S}_{3} \times \boldsymbol{S}_{2''})] + E_{other}, \qquad (S1)$$

where the factor 1/2 represents the DMI energy sharing between the two sites of each bond and E_{other} includes the energy of anisotropy and symmetric exchange. Taking into account the

Fig. S1 (a) Top view of the $AC_{up-up} Cr_2I_3Br_3$ bilayer. Side view of the $AC_{up-up} Cr_2I_3Br_3$ bilayer with (b) clockwise (CW) and (b) anticlockwise (ACW) spin configurations. The schematic diagram of the DMI is shown in (b), where S_1 and S_2 represent the spins of the nearest neighbor Cr atoms and d_{12} is the DMI vector.

orientation of the spins, Eq. (S1) can be rewritten as

$$E_{3} = \frac{\sqrt{3}}{4} d_{32'}^{y} + E_{other}, \qquad (S2)$$

Hence, the energy of atom 3 for clockwise (E_{CW}) and anticlockwise (E_{ACW}) spin configurations shown in Figs. S1(b) and (c) can be expressed as

$$E_{3,CW} = \frac{\sqrt{3}}{4} d_{32'}^{y} + E_{other}, \qquad (S3)$$

$$E_{3,\text{ACW}} = -\frac{\sqrt{3}}{4} d_{32'}^{y} + E_{other}, \qquad (S4)$$

Then, the energy difference between the ACW and CW spin configurations (total DMI energy) is

$$\Delta E_{\rm DMI} = E_{\rm ACW} - E_{\rm CW} = 4\sqrt{3}d_{32'}^{-y}.$$
 (S5)

 $d_{32'}^{-\gamma}$ represents the total DMI parameters d_{tot} , which means the strength of DMI concentrated in a atomic layer. Hence, Eq. (S5) can be rewritten as

$$d_{\rm tot} = \left(E_{\rm ACW} - E_{\rm CW}\right)/m, \qquad (S6)$$

where m is a constant of $4\sqrt{3}$ in the Cr₂I₃X₃ bilayers.

B. Method for estimating Curie temperature

Two possible magnetic configurations of the Janus $Cr_2I_3X_3$ bilayers are considered: interlayer ferromagnetic (FM) and antiferromagnetic (AFM) coupling, as shown in Fig. 1(g). Based on the 2D Heisenberg model, the interlayer Heisenberg spin Hamiltonian of $Cr_2I_3X_3$ bilayers can be expressed as

$$H_{\perp} = -J_{1\perp} \sum_{\langle ij \rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} - J_{2\perp} \sum_{\langle \langle ij \rangle \rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} - J_{3\perp} \sum_{\langle \langle \langle ij \rangle \rangle \rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}, \qquad (S7)$$

where $J_{1\perp}$, $J_{2\perp}$ and $J_{3\perp}$ are the interlayer Cr nearest neighbour, next nearest neighbour and third nearest neighbour exchange interaction parameters. The AC_{dn-up} model, which is the most stable among several stacking patterns of Cr₂I₃X₃ bilayers, is selected to calculate the Curie temperature. The $J_{1\perp}$ (in red), $J_{2\perp}$ (in black) and $J_{3\perp}$ (in green) in AC_{dn-up} Cr₂I₃X₃ bilayer are shown in Fig. S2.

Fig. S2 The interlayer Cr nearest neighbour exchange interaction $J_{1\perp}$ (in red), next nearest neighbour exchange interaction $J_{2\perp}$ (in black) and third nearest neighbour exchange interaction $J_{3\perp}$ (in green) in the AC_{dn-up} Cr₂I₃X₃ bilayers. The dark blue and light blue atoms represent Cr in top and bottom layers.

Using Eq. (S7), the magnetic energy of the two configurations is given by

$$E_{\rm FM/AFM} = E_0 - \left(\pm 2J_{1\perp} \pm 2J_{2\perp} \pm 2J_{3\perp}\right) |\mathbf{S}|^2,$$
(S8)

where $|S|^2 = 3/2$. Neglecting the interlayer next nearest and third nearest neighbors exchange interaction, the exchange energy $E_{ex} = E_{AFM} - E_{FM}$ of AC_{dn-up} model of $Cr_2I_3X_3$ bilayers can be expressed as

$$E_{\rm ex} = E_{\rm AFM} - E_{\rm FM} = 4J \left| S \right|^2$$
 (S9)

The Curie temperature $T_{\rm C}$ can be estimated based on the mean field theory²

$$T_C = \frac{3J}{2K_B}.$$
 (S10)

Fig. S3 Band structure of the AA_{up-up} $Cr_2I_3Br_3$ bilayer calculated by (a) PBE and (b) HSE06 functionals, respectively.

Fig. S4 Band structure of the 2D vdW Janus $Cr_2I_3Br_3$ (upper panel) and $Cr_2I_3Cl_3$ (lower panel) bilayers in AA_{up-up} , AA_{dn-up} , AB_{up-up} , AB_{dn-up} and AB_{up-dn} models. Red and blue lines represent the spin up and spin down channels, respectively.

Fig. S5 Band structure of the 2D vdW Janus $Cr_2I_3X_3$ (X = Br, Cl) bilayers in (a)(d) AC_{up-up} , (b)(e) AC_{dn-up} and (c)(f) AC_{up-dn} models with SOC. The Fermi energy is set to zero. The spin projection along the *z* direction is depicted as the color scale.

Fig. S6 The orbital resolved MAE of (a) Cr_2 , Br_2 and I_2 atoms in the $AC_{dn-up} Cr_2I_3Br_3$ bilayer and (b) Cr_2 , Cl_2 and I_2 atoms in the $AC_{dn-up} Cr_2I_3Cl_3$ bilayer.

References

1 A. Fert, N. Reyren and V. Cros, Nat Rev Mater, 2017, 2, 17031.

2 L. Webster and J. A. Yan, *Phys. Rev. B*, 2018, **98**, 144411.