Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supplementary Information

Metallic two-dimensional BP₂: A high-performance electrode material for Li- and

Na-ion batteries

Xiao-Juan Ye, Jie Xu, Yan-Dong Guo, and Chun-Sheng Liu*
College of Electronic and Optical Engineering & College of Microelectronics, Nanjing
University of Posts and Telecommunications, Nanjing 210023, China

*E-mail: csliu@njupt.edu.cn

I. Phonon density of states

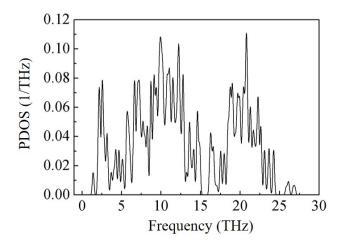
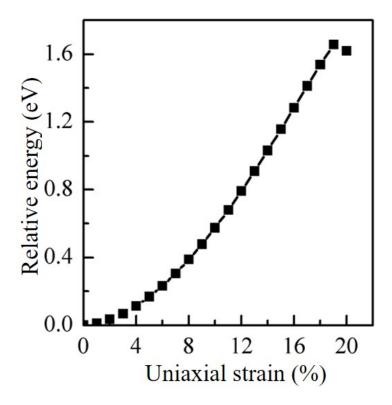



Fig. S1 Phonon density of states of the BP₂ monolayer.

II. Change of the total energy profile under uniaxial strains

Fig. S2 Change of the total energy profile with respect to tensile strain along the *x* direction. The trend with the tensile strain along *y* direction is the same as that along *x* direction.

III. Phonon dispersion under uniaxial strains

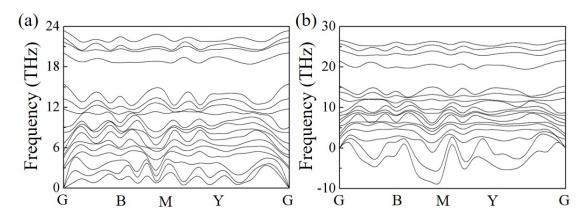


Fig. S3 Phonon dispersion of the BP₂ monolayer under the tensile strain of (a) 19% and (b) 20%.

IV. The Hirshfeld charge for B/P atoms

Table S1. The electrons transferred from Li/Na to the neighboring B or P atoms.

Bi		T _B (Li/Na)	T _{P1} (Li/Na)
PIV	B1 (e)	-0.13 / -0.13	-0.12 / -0.12
	P1 (e)	-0.02 / -0.03	-0.02 / -0.03
P2		H ₂ (Li/Na)	T _{P2} (Li/Na)
**	P2 (e)	-0.05 / -0.05	-0.05 / -0.05
	P3 (e)	0.08 / 0.07	0.08 / 0.07

V. The electrons for BP₂ back-donates to Li/Na

Table S2. The electrons for BP₂ back-donates to the empty Li-2p (Na-3p) orbitals.

	T_{B}	T_{P1}	H_2	T_{P2}
Li-2 <i>p</i> (<i>e</i>)	-0.23	-0.19	-0.18	-0.16
Na-3p(e)	-0.07	-0.06	-0.02	-0.02

VI. The computing time for calculating the diffusion barrier

Table S3. The computing time (in minutes) for calculating the diffusion barrier of a Li (Na) atom on the monolayer BP_2 using LST/QST and NEB methods.

	LST/QST	NEB
Li-BP ₂	3935	5005
Na-BP ₂	4392	5732