Electronic Supplementary Information

Mechanistic Studies on Millerite Chlorination with Ammonium Chloride

Xiaolu Xiong^a, Guangshi Li^a, Xionggang Lu^{a,b,*}, Hongwei Cheng^a, Qian Xu^a, Shenggang Li^{b,c,*}

^a State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advances Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China

^{b.} School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.

^{c.} CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institue, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.

* Corresponding authors: *luxg@shu.edu.cn* (X. Lu); *lisg@sari.ac.cn* (S. Li)

List of Supplementary Figures and Tables

Figure S1. (a) Side view and (b) top view of the NiS(100) surface; (c) Side view and (d) top view of the NiO(100) surface.

Figure S2. Adsorption configurations of a single Cl atom on the NiS(100) surface.

Figure S3. Adsorption configurations for multiple Cl atoms on the NiS(100) surfaces at different surface coverages.

Figure S4. Adsorption configurations of a single O atom on the NiS(100) surface.

Figure S5. Adsorption configurations of a single O_2 oxygen on the NiS(100) surface.

Figure S6. The formation of SO_2 on the NiS(100) surface.

Figure S7. (a) Molecular O_2 chemisorption and (b) dissociative adsorption on the p(1 \times 2) supercell of the NiS(100) surface; (c) Molecular O_2 chemisorption and (d) dissociative adsorption on the p(2 \times 2) supercell of the NiS(100) surface.

Figure S8. The (a) $p(2 \times 2)$ and (c) $p(3 \times 3)$ supercells of the NiO(100) surface; dissociative adsorption of molecular HCl on the (b) and (d) $p(3 \times 3)$ supercells of the NiO (100) surface.

Figure S9. Potential energy surfaces for NH_4Cl adsorption on (a) the NiS(100) surface and (b) the NiO (100) surface with vacuum spacings of 10 Å (black) and 15 Å (red), respectively.

Table S1. Entropy contributions $(-T^*\Delta S, eV)$ to the adsorption and dissociation energies of O₂ and Cl₂ on the NiS(100) surface at 600 K.

Table S2. Adsorption energies (eV) on the NiS(100) and NiO(100) surfaces in Figure 4 and Figure 7 at the PBE level without (PBE) and with the D2 empirical dispersion correction (PBE-D2).

Table S3. Fractional coordinates of the relaxed NiS(100) surface.

Table S4. Fractional coordinates of the relaxed NiO(100) surface.

Figure S1. (a) Side view and (b) top view of the NiS(100) surface; (c) Side view and (d) top view of the NiO(100) surface.

Figure S2. Adsorption configurations of a single Cl atom on the NiS(100) surface.

Figure S3. Adsorption configurations for multiple Cl atoms on the NiS(100) surfaces at different surface coverages.

Figure S4. Adsorption configurations of a single O atom on the NiS(100) surface.

Figure S5. Adsorption configurations of a single O_2 oxygen on the NiS(100) surface.

Figure S6. The formation of SO_2 on the NiS(100) surface.

Figure S7. (a) Molecular O_2 chemisorption and (b) dissociative adsorption on the p(1 \times 2) supercell of the NiS(100) surface; (c) Molecular O_2 chemisorption and (d) dissociative adsorption on the p(2 \times 2) supercell of the NiS(100) surface.

Figure S8. The (a) $p(2 \times 2)$ and (c) $p(3 \times 3)$ supercells of the NiO(100) surface; dissociative adsorption of molecular HCl on the (b) and (d) $p(3 \times 3)$ supercells of the NiO (100) surface.

Figure S9. Potential energy surfaces for NH_4Cl adsorption on (a) the NiS(100) surface and (b) the NiO (100) surface with vacuum spacings of 10 Å (black) and 15 Å (red), respectively. These potential energy surfaces are presented in Figures 4(a) and 7(a), respectively, where a vacuum spacing of 10 Å is used.

Table S1. Entropy contributions ($-T^*\Delta S$, eV) to the adsorption and dissociation energies of O₂ and Cl₂ on the NiS(100) surface at 600 K. Experimental entropies of molecular O₂ and Cl₂ (226.451 J K⁻¹ mol⁻¹ and 247.849 J K⁻¹ mol⁻¹) from the NIST Chemistry WebBook (<u>https://webbook.nist.gov/chemistry/</u>) were used. Entropic corrections lead to less negative or more positive adsorption and dissociation energies, thus destabilize the surface species, although their effect on the relative energies between the adsorption, transition, and dissociation structures are rather small at <01 eV.

Species	NiS(100)
O ₂ *	
adsorption	+0.73
transition state	+0.81
dissociation	+0.72
Cl ₂ *	
adsorption	+0.82
transition state	+0.92
dissociation	+0.81

Table S2. Adsorption energies (eV) on the NiS(100) and NiO(100) surfaces in Figure 4 and Figure 7 at the PBE level without (PBE) and with the D2 empirical dispersion correction (PBE-D2). Although inclusion of the dispersion correction leads to significantly more negative adsorption energies, its effect on the energy barrier is negligible.

Surfaces	Species -	Adsorption energy (eV)			
		PBE	PBE-D2		
NiS(100)	Figure 4				
	i	0.00	0.00		
	ii	-3.95	-4.79		
	iii	-4.50	-5.31		
	iv	-3.40	-3.96		
	TS	-3.27	-3.80		
	v	-3.78	-4.33		
	vi	-3.13	-3.35		
NiO(100)	Figure 7				
	i	-0.57	-1.07		
	ii	-1.82	-2.42		
	iii	-3.36	-4.58		
	iv	-2.24	-3.33		
	v	-2.33	-3.16		
	vi	-3.52	-4.63		
	vii	-2.29	-2.98		
	viii	-2.30	-3.35		
	ix	-1.17	-1.67		

Table S3. Fractional coordinates of the relaxed NiS(100) surface.

NiS(100)							
Ni S							
1.000000000000000							
9.5643530000000	0.000000000000	0.00000000000000000)0000	00		
0.00000000000000000		6.251907000000	0001	0.000000000000000)0000	00	
0.0000000000000000	00	0.000000000000	0000	13.89349400000)0000)5	
Ni S							
12 12							
Selective dynamics							
Direct							
0.0000061983025632	0.436	50840146005185	0.2381	628242159650	Т	Т	Т
0.3704632550808588	0.217	7446922791972	0.2662	2000159987666	Т	Т	Т
0.6296006264012748	0.217	6665529776214	0.2661	980331247990	Т	Т	Т
0.4999815460596224	0.075	54969643662307	0.0400	907072043921	F	F	F
0.8681193594590226	0.408	88352561866344	0.0814	769848390924	F	F	F
0.1319482875632048	0.408	88352561866344	0.0814	769848390924	F	F	F
0.0000101918916870	0.936	50333673729939	0.2381	562498928324	Т	Т	Т
0.3705242163936472	0.717	4438172826776	0.2661	815634364656	Т	Т	Т
0.6295659340229087	0.717	5275334616079	0.2661	953563769158	Т	Т	Т
0.4999815460596224	0.575	55044020968327	0.0400	907072043921	F	F	F
0.8681193594590226	0.908	8426939172294	0.0814	769848390924	F	F	F
0.1319482875632048	0.908	38426939172294	0.0814	769848390924	F	F	F
0.1603191024318429	0.187	4721251675117	0.2162	931483313669	Т	Т	Т
0.8397383791101901	0.187	4521062390378	0.2162	2722744927117	Т	Т	Т
0.4999706640654463	-0.02	90906607995470	0.213	2975341076685	Т	Т	Т
0.6685240496665088	0.337	0171693212995	0.0021	592840505065	F	F	F
0.3315435973557257	0.337	0171693212995	0.0021	592840505065	F	F	F
0.000000000000000000	0.170	3480234110941	0.0000	0000000000000000	F	F	F
0.1603145291470820	0.687	3680231228867	0.2162	2590026144629	Т	Т	Т
0.8397447608947789	0.687	73774730890921	0.2162	436537530862	Т	Т	Т
0.5000476812996296	0.471	2371797452497	0.2131	041278605445	Т	Т	Т
0.6685240496665088	0.837	70246070518945	0.0021	592840505065	F	F	F
0.3315435973557257	0.837	70246070518945	0.0021	592840505065	F	F	F
0.000000000000000000	0.670	3554611416962	0.0000	000000000000000000000000000000000000000	F	F	F

Table S4. Fractional coordinates of the relaxed NiO(100) surface.

NiO(100)							
Ni O							
1.000000000000000							
8.4085180000000	08	0.000000000000	0000	0.00000000000	0000	0	
0.000000000000000	00	8.408518000000	8000	0.00000000000	0000	0	
0.000000000000000	00	0.000000000000	0000	18.40851800000	0000	8	
Ni O							
40 40							
Selective dynamics							
Direct							
0.000000000000000000	0.249	9845989507321	0.1141	862696388714	F	F	F
-0.0000201649363186	0.249	9832361798171	0.34328	362574328524	Т	Т	Т
0.2499845989507321	0.000	00000000000000	0.1141	862696388714	F	F	F
0.2499832361798171	-0.00	00201649363186	0.3432	2862574328524	Т	Т	Т
0.000000000000000000	0.000	00000000000000	0.0000	000000000000000000000000000000000000000	F	F	F
0.000000000000000000	0.000	00000000000000	0.2283	725392777427	F	F	F
-0.0000167036537275	-0.000	00167036537275	0.4551	377383629027	Т	Т	Т
0.2499845989507321	0.249	9845989507321	0.0000	000000000000000000000000000000000000000	F	F	F
0.2499845989507321	0.249	9845989507321	0.2283	725392777427	F	F	F
0.2499828568825077	0.249	9828568825077	0.4551	416083386449	Т	Т	Т
0.4999691979014642	0.249	9845989507321	0.1141	862696388714	F	F	F
0.4999704910036319	0.249	9833058485644	0.3432	862032726331	Т	Т	Т
0.7499537968521892	0.000	00000000000000	0.1141	862696388714	F	F	F
0.7499740222929026	-0.00	00202254407133	0.3432	2863836766034	Т	Т	Т
0.4999691979014642	0.000	00000000000000	0.0000	000000000000000000000000000000000000000	F	F	F
0.4999691979014642	0.000	00000000000000	0.2283	725392777427	F	F	F
0.4999708583296126	-0.00	00168006339128	0.4551	396267970097	Т	Т	Т
0.7499537968521892	0.249	9845989507321	0.0000	000000000000000000000000000000000000000	F	F	F
0.7499537968521892	0.249	9845989507321	0.2283	725392777427	F	F	F
0.7499705974861021	0.249	9829385225838	0.4551	396267970097	Т	Т	Т
0.000000000000000000	0.749	9537968521892	0.1141	862696388714	F	F	F
-0.0000202254407133	0.749	9740222929026	0.34328	363836766034	Т	Т	Т
0.2499845989507321	0.499	9691979014642	0.1141	862696388714	F	F	F
0.2499833058485644	0.499	9704910036319	0.3432	862032726331	Т	Т	Т
0.000000000000000000	0.499	9691979014642	0.0000	000000000000000000000000000000000000000	F	F	F
0.000000000000000000	0.499	9691979014642	0.2283	725392777427	F	F	F
-0.0000168006339128	0.499	9708583296126	0.45513	96267970097	Т	Т	Т
0.2499845989507321	0.749	9537968521892	0.0000	000000000000000000000000000000000000000	F	F	F
0.2499845989507321	0.749	9537968521892	0.2283	725392777427	F	F	F
0.2499829385225838	0.749	9705974861021	0.4551	396267970097	Т	Т	Т
0.4999691979014642	0.749	9537968521892	0.1141	862696388714	F	F	F
0.4999705606723792	0.749	9739617885078	0.3432	862574328524	Т	Т	Т
0.7499537968521892	0.499	9691979014642	0.1141	862696388714	F	F	F

0.7499739617885078	0.4999705606723792	0.3432862574328524	Т	Т	Т
0.4999691979014642	0.4999691979014642	0.000000000000000000	F	F	F
0.4999691979014642	0.4999691979014642	0.2283725392777427	F	F	F
0.4999709399696886	0.4999709399696886	0.4551416083386449	Т	Т	Т
0.7499537968521892	0.7499537968521892	0.00000000000000000	F	F	F
0.7499537968521892	0.7499537968521892	0.2283725392777427	F	F	F
0.7499705005059167	0.7499705005059167	0.4551377383629027	Т	Т	Т
0.2499845989507321	0.2499845989507321	0.1141862696388714	F	F	F
0.2499844546055862	0.2499844546055862	0.3431082589031133	Т	Т	Т
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.1141862696388714	F	F	F
-0.0000172672701923	-0.0000172672701923	0.3431087152620009	Т	Т	Т
0.2499845989507321	0.0000000000000000000000000000000000000	0.000000000000000000	F	F	F
0.2499845989507321	0.0000000000000000000000000000000000000	0.2283725392777427	F	F	F
0.2499839919089160	-0.0000145705061750	0.4573647756947218	Т	Т	Т
0.0000000000000000000000000000000000000	0.2499845989507321	0.000000000000000000	F	F	F
0.0000000000000000000000000000000000000	0.2499845989507321	0.2283725392777427	F	F	F
-0.0000145705061750	0.2499839919089160	0.4573647756947218	Т	Т	Т
0.7499537968521892	0.2499845989507321	0.1141862696388714	F	F	F
0.7499709328828151	0.2499843580197835	0.3431085910922709	Т	Т	Т
0.4999691979014642	0.0000000000000000000000000000000000000	0.1141862696388714	F	F	F
0.4999694388324128	-0.0000171360306259	0.3431085910922709	Т	Т	Т
0.7499537968521892	0.0000000000000000000000000000000000000	0.000000000000000000	F	F	F
0.7499537968521892	0.0000000000000000000000000000000000000	0.2283725392777427	F	F	F
0.7499681955757854	-0.0000143987235962	0.4573633041696884	Т	Т	Т
0.4999691979014642	0.2499845989507321	0.000000000000000000	F	F	F
0.4999691979014642	0.2499845989507321	0.2283725392777427	F	F	F
0.4999699366143519	0.2499838602378444	0.4573662412372143	Т	Т	Т
0.2499845989507321	0.7499537968521892	0.1141862696388714	F	F	F
0.2499843580197835	0.7499709328828151	0.3431085910922709	Т	Т	Т
0.000000000000000000	0.4999691979014642	0.1141862696388714	F	F	F
-0.0000171360306259	0.4999694388324128	0.3431085910922709	T	Ť	T
0.2499845989507321	0.4999691979014642	0.000000000000000000	F	F	F
0.2499845989507321	0.4999691979014642	0.2283725392777427	F	F	F
0.2499838602378444	0.4999699366143519	0.4573662412372143	T	T	T
0.0000000000000000000000000000000000000	0.7499537968521892	0.000000000000000000	F	F	F
0.0000000000000000000000000000000000000	0.7499537968521892	0.2283725392777427	F	F	F
-0.0000143987235962	0.7499681955757854	0.4573633041696884	Ť	T	T
0.7499537968521892	0.7499537968521892	0.1141862696388714	F	F	F
0.7499710641223815	0.7499710641223815	0.3431087152620009	T	- T	- T
0.4999691979014642	0.4999691979014642	0.1141862696388714	F	F	F
0 4999693477466107	0 4999693477466107	0 3431082589031133	т Т	т Т	Т
0 7499537968521892	0 4999691979014642	0.0000000000000000000000000000000000000	F	F	F
0 7499537968521892	0 4999691979014642	0.2283725392777427	F	• F	F
0 7499683673583641	0 4999698049437803	0 4573647756947218	т Т	r T	т Т
0.7777002072202041	0.77770707077752005	0.10/001/007/210	1	1	1

0.4999691979014642	0.7499537968521892	0.00000000000000000	F	F	F	
0.4999691979014642	0.7499537968521892	0.2283725392777427	F	F	F	
0.4999698049432803	0.7499683673583641	0.4573647756947218	Т	Т	Т	