## Supporting Information: On the Wetting Translucency of Hexagonal Boron Nitride

Enrique Wagemann,<sup>†</sup> Yanbin Wang,<sup>‡</sup> Siddhartha Das,<sup>‡</sup> and Sushanta K. Mitra<sup>\*,†</sup>

 †Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1
‡Department of Mechanical Engineering, University of Maryland, College Park, MD20742,

USA

E-mail: skmitra@uwaterloo.ca

### Effect of $\varepsilon_{Au-O}$ on $U_{CS-W}$

The parameters obtained from the fit of the computed total potential energy  $(U_{\rm CS-W})$  to a Mie potential (eq. 1 from the main article) are presented in Figure S1 for the substrate coated by monolayer hBN, Figure S2 for a substrate coated by bilayer hBN and Figure S3 for a substrate coated by trilayer hBN. The computed parameters for free standing hBN bilayer are:  $n_{\rm hBN-W} = 9.071$ ,  $m_{\rm hBN-W} = 4.209$ ,  $\sigma_{\rm hBN-W} = 2.815$  Å, and  $\varepsilon_{\rm hBN-W} = 1.985$ kcal/mol. The computed parameters for free standing hBN trilayer are:  $n_{\rm hBN-W} = 9.121$ ,  $m_{\rm hBN-W} = 4.148$ ,  $\sigma_{\rm hBN-W} = 2.812$  Å, and  $\varepsilon_{\rm hBN-W} = 2.012$  kcal/mol.



Figure S1: Parameters for the coated substrate-water interaction, obtained from the fit to a Mie potential (eq. 1 from the main article). The computed parameters correspond to a surface coated by a monolayer hBN, with different contact distances ( $\delta_{Au-hBN}$ ). a)  $\sigma_{CS-W}$ . b)  $m_{CS-W}$ . c)  $n_{CS-W}$ .



Figure S2: Parameters for the coated substrate-water interaction, obtained from the fit to a Mie potential (eq. 1 from the main article). The computed parameters correspond to a surface coated by bilayer hBN, with different contact distances ( $\delta_{Au-hBN}$ ). a)  $\sigma_{CS-W}$  b)  $m_{CS-W}$  c)  $n_{CS-W}$ .



Figure S3: Parameters for the coated substrate-water interaction, obtained from the fit to a Mie potential (eq. 1 from the main article). The computed parameters correspond to a surface coated by trilayer hBN, with different contact distances ( $\delta_{Au-hBN}$ ). a)  $\varepsilon_{CS-W}$  b)  $\sigma_{CS-W}$  c)  $m_{CS-W}$  d)  $n_{CS-W}$ .

# Water contact angle on a substrate coated by bilayer hBN

The measured WCA for a substrate coated by hBN bilayer is presented in Figure S4. For the studied range of  $\varepsilon_{Au-O}$  and  $\delta_{Au-hBN}$ , we observe that the WCA shows very little change with  $\varepsilon_{Au-hBN}$ . This implies that the wetting translucency effect is not manifested for the multilayer hBN.



Figure S4: Water contact angle as a function of  $\varepsilon_{Au-O}$  for the gold-like substrate with a hBN bilayer as a coating. The dash-dotted lines in represent the water contact angle on the free standing (unsupported) hBN monolayer and bilayer.

## Water contact angle on gold-supported hBN monolayer computed using the force field of Rajan et al.

Here we provide the results for the water contact angles on gold-supported hBN monolayer obtained from the MD simulations conducted by employing the recently developed force field of Rajan et al.<sup>S1</sup> for computing the hBN-water interactions. The parameters for this potential are summarized in Table S1. The parameters for these interactions are computed using the geometric combining rules. For a free-standing hBN monolayer, a WCA of 92.0 ± 1.0° is obtained. A WCA of around 82° is obtained for 2 or more free-standing hBN layers. The WCA as a function of  $\varepsilon_{Au-O}$  is presented in Figure S5, for a substrate coated by monolayer hBN with  $\delta_{Au-hBN} = 3.3$ Å. We observe a behavior similar to the one reproduced by the potential of Wu et al.<sup>S2</sup> [see Figure 6 in the main paper]. This confirms that the wetting translucency effect of hBN monolayer is witnessed in MD simulations even with a different force field.

Table S1: Parameters for the hBN-water interactions, described by the force field of Rajan et al.<sup>S1</sup>.

| Atom type | $\sigma$ (Å) | $\epsilon~(\rm kcal/mol)$ | $\mathbf{q}_i(e)$ |
|-----------|--------------|---------------------------|-------------------|
| Ν         | 3.3087       | 0.069305                  | -0.907            |
| В         | 3.2174       | 0.047343                  | +0.907            |



Figure S5: Water contact angle as a function of  $\varepsilon_{AuO}$  for the gold-like substrate without coating (red) and with an hBN monolayer as a coating (blue). The dashed lines in c) represent a linear fit between  $\cos(WCA)$  and  $\varepsilon_{AuO}$ . The solid lines represent the water contact angle on the free standing (unsupported) hBN monolayer and bilayer. The water-hBN interaction is described using the force field of Rajan et al.<sup>S1</sup>.

#### References

- (S1) Govind Rajan, A.; Strano, M. S.; Blankschtein, D. Ab initio molecular dynamics and lattice dynamics-based force field for modeling hexagonal boron nitride in mechanical and interfacial applications. J. Phys. Chem. Lett. 2018, 9, 1584–1591.
- (S2) Wu, Y.; Wagner, L. K.; Aluru, N. R. Hexagonal boron nitride and water interaction parameters. J. Chem. Phys. 2016, 144, 164118.