Supplementary Information

Clarifying the Impacts of Surface Hydroxyls on CO Oxidation on the

CeO₂(100) Surfaces: A DFT+U Study

Hui Zhou, Dong Wang* and Xue-Qing Gong*

Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China *E-mail: wangd@ecust.edu.cn; xgong@ecust.edu.cn

Figure S1. Calculated structures and adsorption energies of H₂O on the O-t CeO₂(100) surface.

Figure S2. Calculated structures and adsorption energies of H₂O on the CeO₄-t CeO₂(100) surface.

Figure S3. Side views of the calculated structures of adsorbed carboxyl (COOH) on the hydroxylated O-t (a) and CeO₄-t (b) surfaces, where the corresponding top views are also given in the inset.

Table S1. Calculated formation energies of the carboxyl (COOH) species relative to the adsorbed CO on the hydroxylated O-t and CeO₄-t surfaces. Negative E_{form} values indicate that the formation of COOH is endothermic.

Items	$E_{\rm ads}({ m CO}) /{ m eV}$	$E_{\rm form}({ m COOH}) /{ m eV}$	Structure
O-t	0.42	-0.71	Figure S3a
CeO ₄ -t	0.06	-0.46	Figure S3b

Figure S4. Calculated spin-polarized charge densities (top and side views) of the peroxide (a, d) and superoxide species (b, e for the end-on while c, f for the side-on configuration) being adsorbed at the O_v site on the CeO₄-t surface. Spin-up and down densities are colored in yellow and blue at the iso-surface of 0.01 |e|/Bohr³.

Table S2. Calculated adsorption energies (E_{ads}), Bader charges, and O-O bond lengths of the peroxide (O_2^{2-}) or superoxide (O_2^{-}) species being adsorbed at the O_v site on the CeO₄-t surface. Positive E_{ads} values indicate exothermic O₂ adsorption processes.

Creasian	$E_{\rm ads}$	Bader charge	O-O bond length
Species	/ eV	/ e	/ Å
peroxide $(O_2^{2^-})$	0.87	-1.173	1.455
superoxide (O_2^- , end-on)	0.58	-0.689	1.325
superoxide (O_2^- , side-on)	0.86	-0.699	1.335

As seen in Figure S4 and Table S2, we calculated and compared the adsorption energies, Bader charges, O-O bond lengths, and spin-polarized charge densities, about the adsorbed superoxide and peroxide species on the CeO₄-t surface. It was found that, i) the peroxide O_2^{2-} favors to anchor at the O_v site via both of O atoms (Figure S4a), forming a side-on geometry with elongated O-O bond length of 1.455 Å; ii) the superoxide O_2^{-} has two adsorption configurations of the end-on (Figure S4e) and sideon (Figure S4f) structures depending on the number of O involved in binding the vacancy, and the latter is thermodynamically more stable, albeit their comparable O-O bond lengths.

Since the calculated adsorption energies (0.87 vs. 0.86 eV; Table S2) and structures (side-on configuration) are quite similar for the peroxide and superoxide species, it is seemingly difficult to control these two types of adsorption on the CeO₄-t surface. However, spin-polarized charge density analysis in Figure S4 shows that the key for the

 $O_2^{2^-}/O_2^-$ formation lies in whether the second electron is captured by the pre-formed O_2^- (i.e. the peroxide pathway) or by a surface protruding Ce_{4c} cation (i.e. the superoxide pathway). This was further confirmed from calculated Bader charges in Table S2. Therefore, our results indicate a possible strategy to alter the peroxide/superoxide formation by suppressing/promoting the ability of surface Ce_{4c} in trapping electrons.

Figure S5. Calculated energy profile and key structures of CO oxidation in the stage II via the superoxide O_2^- pathway. The corresponding electronic structures (localized electrons) of the key intermediates are also presented. Unit of bond distance: Å.