Structural, Thermodynamic, Electronic and Elastic Properties of Th_{1-x}U_xO₂ and Th_{1-x}Pu_xO₂ Mixed Oxides

P.S. Ghosh, A. Arya

Glass & Advanced Materials Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085,

India

Supplementary Information Materials

Table 1: Pair and multisite correlation functions of SQS-96 structures for mimicking ideal random $A_{1-x}B_xO_2$ solid-solution (x = 1/6, 2/16, 3/16, 4/16, 5,16, 6/16, 7/16 and 8/16). Table also shows standard deviation (S.D.) of error in SQS structures at each concentration calculated as:

$$(f) = \sqrt{\frac{\sum_{m=1}^{6} \left(\overline{\Pi}_{2,m} - (2x-1)^{2}\right)}{m} + \frac{\sum_{m=1}^{3} \left(\overline{\Pi}_{3,m} - (2x-1)^{3}\right)}{m} + \frac{\sum_{m=1}^{3} \left(\overline{\Pi}_{4,m} - (2x-1)^{4}\right)}{m}}$$

$\Pi_{k,m}$	Composition A _{1-X} B _x O ₂								
	x = 1/16	x = 2/16	x = 3/16	x = 4/16	x = 5/16	x = 6/16	x = 7/16	x = 8/16	
	(0.0625)	(0.125)	(0.1875)	(0.25)	(0.3125)	(0.375)	(0.4375)	(0.5)	
П _{2,1}	0.77083	0.56250	0.39583	0.25000	0.14583	0.08333	0.00000 -	0.00000	
$\Pi_{2,2}$	0.75000	0.58333	0.41667	0.25000	0.08333	0.00000	0.16667	0.00000	
П _{2,3}	0.75000	0.54167	0.35417	0.22917	0.12500	0.04167	0.00000	0.00000 -	
П _{2,4}	0.75000	0.50000	0.33333	0.16667	0.08333	0.00000	0.00000	0.33333	
$\Pi_{2,5}$	0.77083	0.56250	0.39583	0.25000	0.14583	0.08333 -	0.00000	0.00000	
П _{2,6}	0.75000	0.50000	0.25000	0.00000	-0.25000	0.50000	0.00000	0.00000	
	0.76562	0.56250	0.39062	0.25	0.14062	0.0625	0.015625	0.00000	
random									
П _{3,1}	0.68750	0.4375	0.2500	0.1250	0.0625	0.03125	0.00000	0.0000	
П _{3,2}	0.66667	0.43750	0.27083	0.10417	0.02083	0.02083		0.00000	
П _{3,3}	0.66667	0.40625	0.23958	0.12500	0.06250	0.02083	-0.04167	0.00000	
П _{3,3}	0.64583	0.38542	0.18750	0.09375	0.03125	0.01042	0.00000	0.00000	
П _{3,3}	0.64583	0.41667	0.25000	0.12500	0.04167	0.00000 -	0.00000	0.00000	
П _{3,3}	0.62500	0.41667	0.22917	0.12500	0.04167	0.02083	0.00000 -	0.00000	
П _{3,3}	0.62500	0.37500	0.15625	0.09375	0.03125	0.00000	0.04167	0.00000	
							0.00000		
	0.66992	0.42188	0.24414	0.125	0.05273	0.015625		0.00000	

random							0.001953	
П _{4,1}	0.62500	0.37500	0.12500	0.00000	0.12500	-0.12500	0.00000 -	0.00000
П _{4,2}	0.60417	0.35417	0.18750	0.04167	0.02083	0.02083 -	0.04167	0.00000
П _{4,3}	0.58333	0.33333	0.16667	-0.08333	0.00000	0.08333	0.00000	0.33333
	0.58618	0.31641	0.15259	0.0625	0.01978	0.00391	0.000244	0.00000
random								
S.D.of	0.039675	0.061464	0.081427	0.116527	0.085430	0.203338	0.070932	0.2357020
errors	118	689	987	426	551	132	242	24

DFT optimised structures VASP POSCAR files

(a) $U_{0.25}Th_{0.75}O_2$ (AFM = antiferro-magnetic)

Generated by cif2cell 1.1.5 from ICSD re

11.2854037487247805	0.0163452702760634	-0.0018677539605601
0.0154872883660834	11.2866561489073138	-0.0000660903454404
-0.0029426708012730	0.0004332413927231	11.2941591336884670
U O Th		

8 64 24

Direct

0.99923711633978400.00068398117168820.99954936083786950.50170541667686940.49919322547796390.99927379112764910.74811512894411970.24969442558050560.50092817144398990.99740169761878920.24889190998105550.75066900617797040.49870311555215520.24864050234199760.74955540116849570.24883015321840580.99952308947276700.24967660399035880.24806775231045460.00051803772684240.75105178146214360.74864952851589210.00203162612606710.74952038171413360.12840273191403400.12167056973051310.12897752501310150.11622633078245530.12905435319017430.63003253227287140.12721585014809260.62496324420613170.12477658752761580.12640393112702540.62698039970042300.6254896416640746

0.6264655458568550 0.1259272322987070 0.1237908412318634 0 6162112524503328 0 1290920661045943 0 6259726835980678 0.6265350625114875 0.6254165314135222 0.1235720339146501 0.6263846803699123 0.6253079800669005 0.6246398456364861 0.3707599178393028 0.1237717887076069 0.3721758892623125 0.3661207968006883 0.1194559112276801 0.8717959856302965 0.3765426990672554 0.6252776688514465 0.3750484098674970 0.3802447697413709 0.6199265823085808 0.8771422855375450 0.8707222762048796 0.1287506011762774 0.3762536910624844 0.8665440155475843 0.1204362545164168 0.8719142575251111 0.8761639565265823 0.6264583747568926 0.3751890401521562 0.8774810468778436 0.6235378843947069 0.8748223643036493 0.3761005959411373 0.3743840556176179 0.3759823146547140 0.3787724086932836 0.3688854999767370 0.8740377474831555 0 3712709780267180 0 8768048102281700 0 3711371849705239 0.3748905554988537 0.8727464743564252 0.8730506840550585 0.8753726438940973 0.3756711731722197 0.3764476727019420 $0.8779335416786395 \ \ 0.3704292624395334 \ \ 0.8733458169360319$ 0.8741451178846034 0.8770107152997186 0.3739631000314789 0.876971941676132 0.8758796970771081 0.8741596538262453 0.1258781923445633 0.3744029146802648 0.3747959475980781 0.1259489280847599 0.3751404303061311 0.8743559673683106 0.1236783524262554 0.8758402748187739 0.3778593854961865 0.1258464881377636 0.8809223245130737 0.8786605942908720 0.6282453721247601 0.3710552472359947 0.3760032171189979 0.6235540883621659 0.3789579213302139 0.8750733451460132 0 6237863254565327 0 8742788311688492 0 3750854401274663 0.6281592002493455 0.8801199626832256 0.8728927982526499 0.1228057926869034 0.1242088433487687 0.3773292849166389 0.1132653481429523 0.1272290632022371 0.8780422152487841 0.1264688387479647 0.6247608610557988 0.3749650833949127 0.1280948545519421 0.6266478444139624 0.8751674838647098 0.6233540152253088 0.1240402321961652 0.3754933035908017

0.6167365892514235 0.1304662021172530 0.8724800197087305 0 6260962414747517 0 6234288695054346 0 3750368860887456 0.6274437896392117 0.6267737287428991 0.8750796444560457 0.3759214537965487 0.1236402976016137 0.1240154863976619 0.3662511242924505 0.1202217046745872 0.6267464043747336 0.3791496195775699 0.6216603076695196 0.1232165425822664 0.3767230341915955 0.6226206899200839 0.6256122284659003 0.8788695350959258 0.1239295892502534 0.1212658039212981 0.8636935197002750 0.1242194646146678 0.6246527145473595 0.8769581111874296 0.6258097521821699 0.1251113483196885 0.8760673212022537 0.6243332394879754 0.6255880780694987 0.1240686682081188 0.3739515433418498 0.1253053406368129 0.1272889402593584 0.3756985863765984 0.6260261749887999 0.1294616773833274 0.8766476222891134 0.1286293445369129 0 1286513193504469 0 8803879911810039 0 6291428548707848 0.6213918674989883 0.3778532528373481 0.1231038943942705 0.6299287063658354 0.3726579372852140 0.6239856301312298 0.6268992769028404 0.8758880724613874 0.1241110381081056 0.6286643215902289 0.8792884911030950 0.6262726216668123 0.3741888472552993 0.3743291484473379 0.1234233837039566 0.3802309093040837 0.3697745663735381 0.6264400815919535 0.3766083642589882 0.8744197773502386 0.1239774086918249 0.3763167434108221 0.8735908018709582 0.6248161903675976 0.8734312370595791 0.3746410091606313 0.1239294890998786 0.8792866718437516 0.3701929419029392 0.6262448820321120 0.8799425368347626 0.8776923410943385 0.1219714193665961 0 8764176325374797 0 8751733257562228 0 6253355032417768 0.0017112479123470 0.4995562804300314 0.9997410885672962 0.4982730320054186 0.0000690411035433 0.9986105332282760 0.7484672911151473 0.2498908449767679 0.9976943140172112 0.7519462659266197 0.7508711051158528 0.9988240295457339 0.2490131101977314 0.2485298184537853 0.9998189609284567 0.4980192234377419 0.0008265501178343 0.5004306709766361

0.9980400914840111 0.0015124178537845 0.5014611404415604 0 5020418927417974 0 4984026885216553 0 5002529058711676 0.0008922980298546 0.4991387567344573 0.5008418948728545 0.2479616467381816 0.2486497588357267 0.5012899481918859 0.2508037161649059 0.7507863979913938 0.5002924550473957 0.7512350375816912 0.7507897568915796 0.5002053622963764 0.2521514794894628 0.7504735110863769 0.0008021537992955 0.9997740853111312 0.2496046353676931 0.2507691189842349 0.7510041670932724 0.5001750235350927 0.2497045568281709 0.0022223329013100 0.7513149435612336 0.2503560946832744 0.4990092431953516 0.2493284519822909 0.2491974979386044 0.2517198463470637 0.4992844595833056 0.2497438370655635 0.0007795215864892 0.7520261727191021 0.7510829645085995 0.7509370500066254 0.4988851064874718 0.7496859591845689 0 5014326184043135 0 7500798810177066 0 7500641988673347 0.2517699465121547 0.4979624499485125 0.7508065210189955 0.7497136982776609 0.0009060376106157 0.2496271917530047 0.5010606089134110 0.7495298181945758 0.2487020284464231

(b) $U_{0.5}Th_{0.5}O_2$ (AFM = antiferro-magnetic)

Generated by cif2cell 1.1.5 from ICSD re

1.00000000000000

11.2073292820394972 -0.0019979989972927 -0.0015637166158337

 $0.0053815747812455 \quad 11.2160033400292427 \quad -0.0014550400551832$

 $-0.0034010096885002 \quad -0.0037055329602777 \quad 11.2464385332697656$

U O Th

16 64 16

Direct

0.2461998497924529 0.2513891681847250 0.4990005243138987 0.7501908893039466 0.2473863583809059 0.4999976287921966 0.0011549262272545 0.4989159792925144 0.4998093230682135 0.0002204988929296 0.0024727961112677 0.5008909215625861 0.5013008831595264 0.4990493976571828 0.0009495060167132 -0.0001582845120640 0.5001540979638263 0.0001997980070590 0.7485347237901323 0.2491498725087928 0.0000542167023213 0.7523177842080191 0.7475109318601457 0.9990819743546919 0.2490733821681883 0.4999494279990510 0.2500728323251115 0.2500474213681546 0.0034866843951131 0.2510197687508652 0.4973721049091271 0.2511254063354483 0.2499861417799258 0.9991340206979170 0.2501331657932305 0.2509734886745960 0.2486710916398995 0.0023575289438504 0.7489537472976194 0.7523836981349180 0.9984320981333628 0.7498766597096258 0 9973170187654018 0 2483167337180407 0 7489911549720324 0.0012828117324185 0.7501677694135132 0.7501484945793394 0.1196660612525060 0.1308825999993170 0.1276488366040692 0.1232036562924781 0.1350121591909342 0.6242905299354693 0.1279660956958070 0.6269067858665558 0.1246698460847487 0.1225990290614886 0.6323393501064102 0.6262964461902774 0.6224578877415796 0.1322800997790056 0.1258378891766451 0.6277570498958759 0.1274295112742350 0.6239665274033552 0 6303976012125349 0 6281556971388634 0 1224921814852390 0.6264254955010267 0.6245055985024477 0.6254270420721995 0.3711931363965716 0.1218970739695898 0.3737871129583083 0.3695840995916220 0.1229775907311774 0.8739339088552301 0.3722979996999491 0.6202852163760439 0.3725442913472584 0.3800015660763650 0.6225241852285320 0.8771108134111996 0.8779054119601928 0.1206507244310752 0.3775293908546292 0.8699727276943668 0.1177324772468384 0.8724918732353498 0.8788120060538247 0.6188748251833268 0.3760141284769971 0.8802220983133758 0.6174828624778532 0.8761600700117608

0 3733364814128441 0 3678754369464816 0 3741280069486179 0.3723549846393996 0.3750890993863207 0.8756645542793985 0.3748791406352801 0.8741292105055271 0.3740259047796516 0.3772972078396662 0.8753095530945944 0.8742653779818289 0.8752078591230882 0.3665283340790054 0.3756933398112114 0.8722819533169438 0.3647493674332871 0.8756095523825106 0.8767130885687372 0.8732036353729745 0.3756272493634112 0.8778603757698444 0.8653859915870747 0.8745528280282382 0.1243378507664173 0.3835549119176033 0.3745224380440694 0.1190165641412529 0.3801816035081465 0.8762824028249817 0.1253404714230213 0.8854813686987204 0.3754817981624379 0.1290066102153114 0.8805457827799931 0.8722611267458890 0.6245330298505546 0.3735610198008548 0.3741086056563104 0.6207769541211532 0.3793057313547884 0.8773321854492190 0.6257045127151163 0.8752329950394289 0.3759062617563672 0.6309086522209424 0.8796370711480024 0.8741604497853837 0.1242685944697656 0.1355047093750433 0.3754963101943175 0.1189858185025222 0.1306873126818477 0.8724540469362830 0.1257702218821952 0.6286442869637383 0.3757783287066729 0.1243665934619020 0.6303675172915674 0.8739985763404995 0.6246047944064405 0.1299016904547695 0.3745402170749597 0.6254637622274201 0.1296913001645337 0.8764134607389752 0.6259460888683163 0.6238131755397298 0.3745113947366095 0 6311344034097814 0 6291654312494025 0 8771902320937417 0.3699533840032916 0.1219683704483087 0.1268868107353082 0.3708223746052318 0.1230537131176494 0.6254851780391379 0.3775560648546037 0.6177736540256129 0.1248515849702124 0.3749278769223807 0.6249831700847231 0.6249297529481511 0.8724655682599025 0.1231091584742991 0.1245093842881775 0 8753346398906257 0 1153008843577216 0 6248796817818346 0.8801744263939125 0.6190277182388639 0.1232905705500847 0.8789709884708302 0.6173635910991632 0.6244627096293658 0.1242196419784470 0.3822851374603845 0.1266986977959377

0 1190336384733711 0 3815746399489685 0 6235214618479817 0.1277587462649248 0.8804055956642813 0.1266546706369315 0.1266793441150602 0.8856547627590990 0.6248788460328737 0.6219531507645480 0.3787912664498174 0.1229889105992100 0.6235603371951872 0.3740212721478544 0.6246612862724570 0.6258250234654175 0.8766726491365603 0.1237679976604021 0.6307591621471549 0.8782337818876560 0.6266027150012262 0.3765425543174581 0.3708075942290968 0.1275124585917678 0.3689072592837724 0.3717991264337943 0.6224940698192547 0.3755169591408099 0.8738343889934168 0.1257897416702803 0.3767376568957717 0.8758294157789689 0.6260023646390315 0.8745807688922527 0.3673075720864913 0.1242050043985477 0.8730540167931129 0.3641600103313732 0.6244275261189755 0.8732959286994133 0.8698627834355951 0.1226910443379872 0.8810293305933238 0.8684573049224226 0.6273280239526065 0.9985326014749066 0.0005524872029353 0.9989697387964636 0.5002035819526673 0.0004531776983542 0.0000802220064991 0.2498973921027868 0.7525934598386026 0.5001366178336845 0.4996489372300175 0.4976379150858546 0.4988344571690859 0.4991766405857673 0.0012823050812243 0.4999227959826578 0.2473440239571378 0.2524474324901512 0.0010991764223654 0.7536009676438771 0.7485289769951912 0.5010040636993622 0.2515970627993351 0.7509802214775562 0.9998927100772568 0 4984900863359730 0 2498717054396073 0 7499740552497741 0.5026349180384618 0.7512107187912600 0.7509737115504900 0.7514033874119805 0.4973839792684900 0.7508907340615245 0.2474982761777943 0.5015305089846190 0.7500381842377947 0.0024858159655661 0.7493141303564385 0.2499160856917239 0.5010670287908960 0.7495957469039891 0.2489364573670582 0 7503719383686764 0 4964127547772729 0 2489995622830626 0.7506759114864003 0.0001718572269938 0.2501560778402624

(c) $U_{0.75}Th_{0.25}O_2$ (AFM = antiferro-magnetic)

Generated by cif2cell 1.1.5 from ICSD re

1.000000000000000

11.1482235765931552 0.0490807842453200 -0.0054867206859241 0.0468922608675907 11.1481432289980482 -0.0047437253855465 -0.0048040756947582 -0.0053092523258161 11.1990337828580397 U O Th 24 64 8

Direct

0.00154671877375290.50066408560487920.00025378651256070.49963528701329710.99965164039928890.00146114796921230.75031918318196460.25039355338297690.00141771220659220.75077345936265580.74951603047495300.00071274859315680.25025165014099330.25104841508814470.00081109204298630.49816706794485060.99830396277837050.49936074545782060.99808660923494360.99850449916137050.49863975540831620.50058366385088060.50061461809107840.49964769329567260.00207054534434030.50142009071985490.4993648876977286

0 2495760619995753 0 2509094975099492 0 4989629397977591 0.2499749018772795 0.7487829888884997 0.5001145553274121 0.7495431986458563 0.7494070975976842 0.4994088772410601 0.2502473793768648 0.7489933864832110 0.0000698487210954 0.0006921076467620 0.2521496508979266 0.2492008451683710 0.7517662219574609 0.5008046386812000 0.2500037581481878 0.9986113387088651 0.7486972922752402 0.2503456122173993 0.4996011491939108 0.2492041998028238 0.2501932671389324 0.2503234595494603 0.4994155160080688 0.2505876896871625 -0.0000809924230233 0.7482822304530830 0.74957943021410080.7521982648221532 0.5023314687103203 0.7499732981282379 0.5007839694030023 0.7487659060481154 0.7501308814561971 0.2505243411600489 0.5008157810697014 0.7497460866675578 0.7483501052131912 0.9988386678697286 0.2498047455879647 0.5009255848077110 0.7497022057334689 0.2513763177704804 0.1193176602165766 0.1279461189930179 0.1268367345729959 0.1293255956541901 0.1294234006203783 0.6214585869703453 0.1148109610607991 0.6244801018432324 0.1253822207300536 0.1370054362883041 0.6272528104615889 0.6253794503397767 0.6186652016720016 0.1248573645932832 0.1257771730909237 0.6264092137087967 0.1253903557907415 0.6236392596323777 0.6179926011117414 0.6284338403213048 0.1275566054825827 0.6370127263559564 0.6262352283605449 0.6247792189179018 0 3767978771894329 0 1178301498173831 0 3763176718641800 0.3697436470101350 0.1311609607409519 0.8766884650943838 0.3753243521251783 0.6145939445998755 0.3753334206623025 0.3764686914542558 0.6339587612275148 0.8750000302292901 0.8744703958149012 0.1155544261858357 0.3718569763584499 0.8689266899426709 0.1316607294426686 0.8752443899733644 0.8753156072716944 0.6158949598217290 0.3747310479415072 0.8774132357174261 0.6334079438668905 0.8750592065590276 0.3760446427616748 0.3653343938876175 0.3758060531581105 0.3738604592161475 0.3824515515018035 0.8738203735885584

0 3716021196148260 0 8643079191482027 0 3749377201754356 0.3787503614842110 0.8808204435065944 0.8773386188467758 0.8791528415542996 0.3684562041730447 0.3729190456969526 0.8766682649174762 0.3848398368958985 0.8761497935538641 0.8699987522278091 0.8656131563042686 0.3732032999193959 0.8759816228041176 0.8777897212692665 0.8748688222052653 0.1268404252214496 0.3856431959935503 0.3744670798233289 0.1284273839290719 0.3699673565526931 0.8765890873855732 0.1190459503539297 0.8822980546743733 0.3762312395739634 0.1265364972421533 0.8649884322895740 0.8745831130800359 0.6261593775445106 0.3844008995724251 0.3736791728880837 0.6289879226857110 0.3686899990488486 0.8764367178733105 0.6200376467027543 0.8811274908863194 0.3768577756282762 0.6257455175340431 0.8654023796556316 0.8764824237781275 0.1243741645488947 0.1353220129148008 0.3750027044683908 0.1217157700609112 0.1211275589142218 0.8752522032789549 0.1253671627570616 0.6347995176812209 0.3749560534776377 0.1268606862101123 0.6162168800752229 0.8752921686701949 0.6226773012492774 0.1297272727438987 0.3721109694339957 0.6192196507372086 0.1179294517776806 0.8782509791591170 0.6252032297151527 0.6334598464731501 0.3754196600849807 0.6293503107366155 0.6185552256850149 0.8735685186528697 0.3698839260153874 0.1269923028286147 0.1238742221909183 0 3786648430814440 0 1201423819286388 0 6232327279992186 0.3648733668262719 0.6248460804394240 0.1256452133647505 0.3870283876146316 0.6223127139911229 0.6259443038214673 0.8683260306634230 0.1275464711108561 0.1239057666600945 0.8792605099343280 0.1211074578716730 0.6223994501825686 0.8654991570696809 0.6242428493891805 0.1249094464016208 0 8872226891171497 0 6243139012371910 0 6250766449613347 0.1352969346589102 0.3761888627766566 0.1258394108321938 0.1191225110627531 0.3806704674416835 0.6232444153534339 0.1314496081077669 0.8715935062622659 0.1233310681412335

0 1145156409238502 0 8762205908850578 0 6250349434665134 0.6359029193421664 0.3758749507900249 0.1263151679614460 0.6183134329726746 0.3792541271748940 0.6235902633575727 0.6337033806751742 0.8754180005406230 0.1267332854613726 0.6147372093720668 0.8743787913615825 0.6260554243915183 0.3833139117950481 0.3730220686578349 0.1274110386139848 0.3658818744613487 0.3736732198247791 0.6241789424299673 0.3844652939493800 0.8746710358850737 0.1258428646810759 0.3671935280871143 0.8686058160899711 0.6232616271908223 0.8857011994472926 0.3758562034054448 0.1241991762362690 0.8687877177734821 0.3777787527459287 0.6254893490657230 0.8804000207192032 0.8730804996092829 0.1282403974725632 0.8671458975835943 0.8703148442810205 0.6217897916045265 0.9983609462536243 0.9998773223571503 0.0009437614487681 0.5016194043029458 0.5003443870146187 0.0007920554024980 0.7492670982149010 0.2502988962241557 0.4980006090608828 $0.0004790672943974 \ \ 0.2523886521982890 \ \ 0.7496322230060172$

 $0.4986215306550881 \ \ 0.2499831165530809 \ \ 0.7500082873428371$

 $0.2496244462456575 \ \ 0.0004789093739512 \ \ 0.2504617865155646$

 $0.2493620119027114 \ \ 0.9989490066771753 \ \ 0.7495186391732451$

 $0.7478673888016300 \ \ 0.9975123333996360 \ \ 0.7498581155516423$

(d) $Pu_{0.25}Th_{0.75}O_2$ (AFM = antiferro-magnetic)

Generated by cif2cell 1.1.5 from ICSD re

 $11.2444845851264592 \quad 0.0031568131184450 \quad 0.0013654192575503$

 $0.0028122786885132 \quad 11.2405907665250933 \quad 0.0015115334978897$

 $0.0014646807721748 \quad 0.0024884225944383 \quad 11.2414587457832411$

Pu O Th

8 64 24

Direct

0.0008238571881472 0.0012397688456951 0.9980223418638771 0.5001326932067024 0.4989411513940342 0.9990270945343065 0.7502655177116998 0.2486910704462425 0.5028555587245684 0.9990164322476904 0.2468905506613197 0.7503802807164928 0.5012468375309617 0.2491972540849445 0.7501241358549720 0.2491216094923226 0.9996833835967440 0.2493450255411510 0.2486651897129734 0.0017741999839473 0.7511252507355898 0 7510523331494446 0 0030322481782990 0 7496972203943694 0.1252093345581155 0.1197881524644204 0.1237194903703533 0.1238779284413931 0.1245606184986366 0.6315528597562151 0.1255842951089719 0.6257849337081935 0.1243317627915548 0.1250139980816486 0.6248616794615011 0.6255357391075013 0.6251092231450646 0.1254930529755359 0.1236089110611085 0.6277056225107056 0.1276382909774224 0.6279984785011560 0.6221558550014565 0.6224470026975815 0.1222220279442167 0.6249842830966871 0.6238750679951363 0.6253402801906655 0.3728293394453752 0.1227874133036107 0.3737678509908466 0 3732932529488970 0 1248561091041910 0 8711511809494946 0.3753901204648390 0.6250606195122100 0.3748373949846515 0.3772534949913949 0.6224789980238117 0.8778342846611686 0.8727218108283576 0.1271296257960141 0.3780510784550221 0.8778611570435596 0.1241546466207879 0.8710158661452829 0.8748729042778335 0.6245999539282950 0.3750108315545199 0.8749451525877532 0.6251678027967897 0.8746573789869884 0.3748075597969973 0.3738860275429943 0.3763651121779322 0.3808099979688471 0.3736873252051734 0.8749895153106123 0.3723307588678011 0.8780533784287132 0.3726609188001853 0.3723308208629508 0.8776722833951857 0.8720464610395131 0.8722352520702680 0.3713856485372479 0.3783331758000881 0.8772733306419532 0.3714878560423431 0.8717814872568783 0.8756973648284989 0.8759707513859720 0.3756104145665160 0.8749368292101639 0.8811947608325625 0.8749313307118540 0.1249910567003554 0.3738498868811750 0.3759730120960694 0.1241546526076069 0.3719526124510004 0.8735929405793588 0.1270141872463320 0.8782019346437561 0.3729762704054901 0.1238240997036280 0.8818457476351983 0.8748929815390343 0.6261381743925332 0.3728807666828056 0.3761470212972680 0.6207711300028995 0.3733910731389810 0.8739247173465089 0.6245156812312479 0.8758009026398360 0.3750869570189797 0.6273522743265407 0.8786878964957828 0.8724686102829449 0 1261832808693213 0 1231474731502245 0 3749674261808195 0.1221343686593904 0.1234460647254121 0.8731412310076773 0.1250401257051892 0.6254197971382118 0.3749161774219139 0.1256450765963710 0.6264765845206819 0.8751769229347757 0.6273564134500063 0.1275306196413742 0.3789098005521914 0.6253045152711555 0.1255901556348642 0.8689248223082956 0 6247795590882110 0 6248878739198286 0 3749494735915241 0.6236313628185309 0.6228999402416995 0.8761594021182466 0.3722348823880140 0.1225618284102209 0.1268658515130298 0.3759856246323510 0.1252044207083146 0.6306749064347007

0 3769736344455247 0 6231950915337595 0 1219409903429878 0.3754212029478203 0.6246137394637957 0.6255571150019190 0.8781548959920190 0.1224621398366182 0.1215523704890378 0.8723992224837233 0.1257803167673322 0.6278669582120837 0.8746794616080898 0.6254945054327605 0.1246240657002503 0.8746125073950430 0.6244416967340612 0.6256086187102684 0.1249798874673559 0.3735511189252856 0.1248909865419252 0.1225278110601089 0.3706579438038252 0.6285446559570731 0.1259959461459701 0.8796182106281947 0.1252787060655121 0.1267485494249848 0.8784121570011805 0.6276847460804247 0.6228359288335805 0.3767261346491961 0.1207572784570331 0.6268593714043810 0.3691589029749247 0.6249226027378163 0.6251054921327052 0.8752904674482502 0.1240700936546953 0.6261255233455414 0.8777251975100427 0.6270108188016690 0.3764820867568273 0.3756840434387306 0.1227983189741048 0 3779817956291943 0 3710266773666000 0 6285948813720725

0.3732696634898688 0.8768264758198472 0.1249742199012894 0.3721964856136588 0.8782604034665903 0.6274144460446179 0.8744056175554454 0.3736683632835456 0.1243475115019656 0.8747175313133975 0.3680411703310404 0.6254113534837524 0.8782720626564846 0.8779466327206583 0.1214153842128115 0.8727996602784506 0.8787271189577398 0.6281878821099203 0.0002273127460002 0.4991525358611206 0.9991578693121349 0 4988618147848896 0 0008976588571054 0 9976863316771944 0.7502739120884431 0.2490657633659126 0.9966927763159089 0.7501087113524451 0.7510719692076039 0.9987467366601250 0.2498233663368622 0.2477901145049876 0.9984454737282894 0.5000589890826945 0.0018658372122884 0.5021604546440962 0.9995859336911802 0.0019128143940481 0.5024083881050878 0 5011511333910874 0 4978225811500977 0 5006757122340028 0.9990353772825200 0.4977730367809428 0.5011181476400833 0.2498537886705864 0.2479149621752517 0.5025646358026533 0.2499005489738365 0.7518100848461813 0.5000286368341493

07497635289521832 07506637327246749 05007067889071400 0.2501020950757550 0.7519803371643076 0.0000889494607140 0.0000782914994751 0.2479248095858941 0.2503138764360665 0.7488521645097482 0.4989916711977071 0.2496915102465192 0.0011559263357186 0.7519272718916487 0.2491268346782710 0.4996542263344005 0.2499593518968084 0.2499508611364060 0.2508700620194845 0.4997791057741851 0.2492482879325119 0.9999023782058610 0.7529856948703942 0.7509459267531928 0.7493023602668576 0.4969962491954972 0.7496878006970028 0.5000744516904883 0.7507216431638923 0.7505719971856147 0.2512497690272887 0.4980746541751450 0.7514075808811641 0.7508886115960103 0.0008805940451131 0.2499307488743107 0.4990414015121884 0.7499876551494237 0.2487025990159232

(e) $Pu_{0.5}Th_{0.5}O_2$ (AFM = antiferro-magnetic) Generated by cif2cell 1.1.5 from ICSD re

11.1348197469980494 0.0019675673534503 -0.0034582071646574 -0.0011940289308022 11.1358651677425815 -0.0051413185599627 -0.0052765026906354 -0.0065626422137791 11.1384069354696251 Pu O Th

16 64 16

Direct

0.24935899801604290.49717586726216780.25054181419416010.24927184488908530.00310100497799650.25200920651009840.49915704182084200.25078088763277610.25002205356979050.00171116686972680.25083008632329890.25215974131442280.24724501331216050.24925652664994190.49802596376852570.75304561391812740.24871166468635880.50007741135386150.00103181839175480.49700521316721930.5015507533781920.00089946967406130.00310095298745600.50151270239534250.50135173052613670.49916973908325810.00181244178308080.99953865321700660.49906053963429350.0008502157617509

0.2468385559296049 0.0013276931246284 0.7477556567813818 0.7523781632918916 0.0006830146831973 0.7493788358680501 0.9987097643982412 0.2486869751421447 0.7477357992272968 0.9987129458333783 0.7512568899119043 0.7502346979612010 0.7507670862532050 0.2509358563019755 0.9996206805218485 0.7509631763255401 0.7490145561579237 0.9981635578355315 0.1242036628883934 0.1261100873862433 0.1298262242583310 0 1232971549195648 0 1257819426911708 0 6235432933342292 0.1255493352226927 0.6204142636433544 0.1256834743795926 0.1198783434695846 0.6266704188498352 0.6261859963867298 0.6248342923405819 0.1303883035662205 0.1256883619925805 0.6312221007291480 0.1249438416275706 0.6248469603169335 0.6264895124358215 0.6235303438433053 0.1202047856488592 0.6259876464984421 0.6246087852329129 0.6258728204592505 0.3721179634285791 0.1276803364730392 0.3732017885938630 0.3717011186654830 0.1232504965882463 0.8726930786852131 0.3711113183503009 0.6219274775174148 0.3714661587371087 0.3772997292645768 0.6226312050695749 0.8775707261965058 0.8799970135162706 0.1272077431711854 0.3773228401383321 0.8736712784625980 0.1271623949099090 0.8716916107290117 0.8783825760846420 0.6215069941631212 0.3778231649670679 0.8779939147826397 0.6271905312603123 0.8779394028651812 0.3721689018973618 0.3705817530772427 0.3723377625979980 0.3766437053313198 0.3769248922328902 0.8781130093879851 0.3716085646708016 0.8775955252285607 0.3726485338881754 0.3718662542463929 0.8776464823475414 0.8730107020280303 0.8781037504094770 0.3705488542119292 0.3772212877895237 0.8762092412157875 0.3712767396503179 0.8761378994744659 $0.8785943103953012 \ \ 0.8783413622721631 \ \ 0.3780073231201330$ 0.8723079636220189 0.8730952338690632 0.8718627974526750 0.1252370411394632 0.3747314073363607 0.3758419934369758 0.1195830508083548 0.3747953195483447 0.8768805210768955 0.1246140294668489 0.8820621918242433 0.3757558425947941

0.1227100527024597 0.8736001663627688 0.8698125737514584 0.6254529579135172 0.3694877497469190 0.3735530613041501 0.6261348831515501 0.3758317398025483 0.8802742227190686 0.6250689045893861 0.8760767450800316 0.3748220501228537 0.6303286108569198 0.8761927810684494 0.8743148569514804 0.1255343081417603 0.1278967907672257 0.3758473581285459 0.1237864748672633 0.1253665156645143 0.8686874241966748 0 1247311392782999 0 6190549141946665 0 3758188860211478 0.1196259555515263 0.6236399003660307 0.8758711068269910 0.6255368713055902 0.1305614865114475 0.3753516610635073 0.6292056241719708 0.1260335832979333 0.8752068630757728 0.6255761287692616 0.6235810616039656 0.3739423889080246 0.6267959876531747 0.6254757345423614 0.8799518710542634 0.3749860084086563 0.1261668833828319 0.1295120775580290 0.3695330579479876 0.1264619257627730 0.6234038003933020 0.3752318210753103 0.6185359607380359 0.1243335235712976 0.3737127664855424 0.6249014552372535 0.6246715153439200 0 8747128569317094 0 1299212960349997 0 1240997655864461 0.8757735335508754 0.1249693508864515 0.6239145018039775 0.8758583044134599 0.6228945301610674 0.1206379901947335 0.8801480187832748 0.6243056499426727 0.6267893866120356 0.1235046273330648 0.3762012230410358 0.1296385587208805 0.1205587311051571 0.3716891518231110 0.6221695897286460 0.1261364893238630 0.8770596890165319 0.1263995923716147 0.1211184556212343 0.8795630742323346 0.6263477307971805 0.6244651424635566 0.3727058408856886 0.1219474352742016 0.6274254273944239 0.3720468862466758 0.6231583939710275 0.6274270408408105 0.8726939663460183 0.1215252315989190 0.6275713513004403 0.8788482211816333 0.6278208534721635 0.3773633457024193 0.3765020932938036 0.1284636469465198 0.3702933789421634 0.3719022936803203 0.6220581660154214 0.3726505182017045 0.8776340488360338 0.1269697968823733 0 3712539044021441 0 8783528563310887 0 6271216577308928 0.8798088748422128 0.3727511873561077 0.1233913220610632 0.8781061676321456 0.3716238139105755 0.6227494555044394 0.8729644539679241 0.8723664584308466 0.1218164430210065 0.8782034670790516 0.8779577885494737 0.6279437721936969 0.9986400750248726 0.0006954918787834 0.9976902971244070 0.5005328429927410 0.2493944915906190 0.7500914142327443 0.5008060116481294 0.7509967134567223 0.7517823228449364 0 7530063058864763 0 4990782784376536 0 7520833514240288 0.2466165148677918 0.4992385069006303 0.7503116408794203 0.5007307320183938 0.0011501673499887 0.9998074942172411 0.2468536323100356 0.7513555570729773 0.5003763635400835 0.4988925584884424 0.4970151036353333 0.4980742195869109 0.4987922753790646 0.0030539318848491 0.4995919088906315 0.2489302581285743 0.2511866274733904 0.0022226361578750 0.7529649402127535 0.7509012819642230 0.5020502549807697 0.2487522393678836 0.7488594678083682 0.9999440608560379 0.0010901911412657 0.7489715018154156 0.2498501088076709 $0.4994215298560117 \ \ 0.7487992339030539 \ \ 0.2479331986759133$

 $0.7515738404539480 \ \ 0.4965800109621591 \ \ 0.2480600692728532$

 $0.7513337620413318 \ \ 0.0028920739283375 \ \ 0.2499147727280707$

(f) $Pu_{0.75}Th_{0.25}O_2$ (AFM = antiferro-magnetic) Generated by cif2cell 1.1.5 from ICSD re

 $11.0302085508776102 \quad -0.0040952418089438 \quad 0.0019856835744161$

 $-0.0045331633381538 \quad 11.0320849692448704 \quad -0.0015152553112686$

 $0.0019867145028449 \quad 0.0024258816260339 \quad 11.0326030039112695$

Pu O Th

24 64 8

Direct

0.9998804773789808 0.5009532804307034 0.0010248535837979 0.5011476055316433 0.9989625141337481 0.0020377368119712 0.7498357618681331 0.2509560132094815 0.0029405510492840 0.7502151238576718 0.7488050808759702 0.0010336519722204 0 2499051051802265 0 2520238403099446 0 0021012480946115 0.5001917204850098 0.9982282003808531 0.4981581863050177 0.9996629306878639 0.9979042894213684 0.4978961373880421 0.4990068712980308 0.5021402490190315 0.4988539930155987 0.0010137279810154 0.5017982257919724 0.4990495764082444 0.2498586978135821 0.2518861126357577 0.4980493289223034 0.2500870005198071 0.7475871475692286 0.5000147325151362 0.7500756364069657 0.7490125586678245 0.4989045685508122 0.2500662500295475 0.7478888720082080 0.0000946981127724 0.0002291394065125 0.2520800932636832 0.2499903378905440 0.7511670616711511 0.5011831519306735 0.2499825558004671 0.9988992416070621 0.7475692140477437 0.2513191321995002 0.4996569481707110 0.2501213709909656 0.2498493883340911 0.2489133457577958 0.4999794020691011 0.2512557873883139 0.9997298570829034 0.7469327903280106 0.7484194527911059 0.7510364867655464 0.5029409859075316 0.7494991939499380 0.5000065635000912 0.7487354853515454 0.7491474215137298 0.2488847527799697 0.5019223736320865 0.7492086057755758 0.7489683914845104 0.9990405896246142 0.2500635996783194 0.5011247905775268 0.7500141109191751 0.2512387467093289 0.1251863654110071 0.1298490725166640 0.1264269685869396 0.1259635508220236 0.1245646056543195 0.6193595227966239 0.1235070730627457 0.6237838228548566 0.1268274386680982 0 1255013709575705 0 6250543255729482 0 6244602656012553 0.6249201864889019 0.1240824612377113 0.1261908498648381 0.6220623698504136 0.1222645019770819 0.6215999512646981 0.6284037871336975 0.6283923672949526 0.1289601818865968 0.6244501095669991 0.6259218130246184 0.6242188495739394 0.3764648139648877 0.1269900367446505 0.3759987110709979 0 3762010900097049 0 1233089961170599 0 8793429547827776 0.3749724037895042 0.6248509727646470 0.3747428524325729 0.3719304960181338 0.6271021181815620 0.8736027270098343 0.8772356517096896 0.1218437523499790 0.3711687997533674 0 8735212291583309 0 1264376142631302 0 8771747238685187 0.8749367112390367 0.6251443917034425 0.3745053194429033 0.8752685472106707 0.6246654156192820 0.8758328855126647 0.3747515985217609 0.3763313213618280 0.3744711900155790 0.3700697651935344 0.3763105852023707 0.8752764587800592 0.3778027838676898 0.8716697442351893 0.3774641544125012 0.3776430943625172 0.8714060773690421 0.8773418999340313 0.8775056984351821 0.3775765030836815 0.3714215209661826 0.8735702626574045 0.3791836642275284 0.8770417717473266 0.8743380643851623 0.8741600654304461 0.3746249289145804 0.8738890503539049 0.8683937684082896 0.8741711868856772 0.1253066492036324 0.3760823011389679 0.3754677387010967 0.1274476958874755 0.3790722889468753 0.8784916308502034 0.1230916463793518 0.8704532648498938 0.3768273916800350 0.1246449298698460 0.8696401290799847 0.8749716746522394 0 6220143881639785 0 3788263043580399 0 3721866312498434 0.6292032808503921 0.3757030703432498 0.8765465953931731 0.6264106733732702 0.8749691763182608 0.3752022457193861 0.6219705561405955 0.8711270977220520 0.8788336863243532 0.1222635342085529 0.1280448235233579 0.3763797833607507 0.1276798947884317 0.1278697763683642 0.8778687030624440 0.1253680273299692 0.6242670479142309 0.3757081659678228 0.1237884563143111 0.6238203782799309 0.8733166493820521 0 6222521538765872 0 1232796487583144 0 3716561323099475 0.6255351675385795 0.1253788354072165 0.8805838871907576 0.6253743934168857 0.6254667655542392 0.3752284332116830 0.6274543401540191 0.6273325488222435 0.8714479099244344 0.3781179037161267 0.1280999109616479 0.1236221966172484 0.3748147340239940 0.1247305871385453 0.6200716990209624 0 3730421266660058 0 6262047729941963 0 1275675689570215 0.3746427784277951 0.6248368038303412 0.6247638355076718 0.8708587898066203 0.1270394490282927 0.1277473374600326 0.8769453568731568 0.1230646138586618 0.6218812800587334 0 8750241795361441 0 6239456896076708 0 1243678496785587 0.8753434668328619 0.6250746818557114 0.6229876477909724 0.1240714769499572 0.3769829537639832 0.1262011810762336 0.1273794144371410 0.3787354845786056 0.6228701898984892 0.1263365026363399 0.8698572606783119 0.1255465779238826 0.1215175303224066 0.8713229955187514 0.6227039033430395 0.6271239842773537 0.3739249181990218 0.1274488487909421 0.6260463872362411 0.3808209602934018 0.6248417884070658 0.6250220992145704 0.8752762473621672 0.1262978823215756 0.6228604263627905 0.8712988526895997 0.6227258487141091 0.3722234195402888 0.3729833403172544 0.1285595858170465 0.3729547219839959 0.3786877085589059 0.6215834187265716 0.3781334733452156 0.8720964503541959 0.1241362475756210 0.3766320136293788 0.8709151537597539 0.6221350140609345 0.8761245823669945 0.3759202911267133 0.1265197519824487 0 8757920954555876 0 3814022082674824 0 6234868823040497 0.87286407616880760.87056942428627970.12864180837174280.87639225136495650.87033131782409050.62144942547341600.99903489381799050.99862849484460460.00188678734754870.49994359476773780.50108144542424050.00133512302486180.74990659163654350.25115600157978310.49670570238639920.001111084839024740.25301829977162520.74990882424594800.49926592202654560.25103380126153050.75017814964664180.25120269652506800.99973771322507520.25108101286201750.25084412001347020.99763159314046630.74908352679878360.74893330825437580.99680900916852630.7497784409161981

Choices of U/J parameters for PuO₂

The GGA+U formalism requires knowledge of strong onsite Coulomb interaction U and exchange J parameters applied to the 5f electrons of the Pu⁴⁺ cations. For Pu⁴⁺, these parameters have been adjusted from previous electronic structure calculations [1] and there is no unique choice of U/J parameters for LDA+U/GGA+U formalism in the literature. This is in contrast to UO₂ where U and J values are extracted from experiment and further validated by many electronic structure calculations [2-5]. The evaluation of structural and electronic properties of (U, Pu)O₂ using LDA+U has been performed with different U values for Pu⁴⁺ cations by Dorado *et al.* (U = 4.0 eV and J = 0.70 eV) [6] and Yang *et al.* (U = 4.7 eV and J = 0.70 eV) [4]. Zhang *et al.* [11] used $U_{eff} = 4 \text{ eV}$ to study ground state and high pressure structural, electronic and elastic properties of PuO₂. Similarly, no unique choice of U parameter has been found in the literature to study structural and electronic properties of α -Pu₂O₃ [7-11]. It is therefore important to assess the effect of U parameter for Pu⁴⁺ cation on the structural and electronic properties of PuO₂ and α -Pu₂O₃. In this section, we present the effect of small variations of the onsite Coulomb interaction parameter U on the lattice parameter and the band gap of PuO₂ and α -Pu₂O₃. The value of the J parameter is kept constant at 0.7 eV throughout the study. The results are shown in Figure S2 and compared with available experimental data.

Figure S1: Magnetic configurations of PuO_2 and Pu_2O_3 . (a) 1-*k* AFM PuO_2 with the magnetic order along (0 0 1) lattice direction; (b) 1-*k* AFM Pu_2O_3 with the magnetic order along (0 0 1) lattice direction; (c) Regulski AFM Pu_2O_3 with four magnetic sublattices I, II, III and IV (d). In Fig. (a) and (b), the black and red balls designate Pu and O atoms, respectively. In Fig. (c), O atoms are removed for the sake of a clear indication of Pu magnetic order.

Figure S2: Variation of lattice constant (a_0), electronic band gap (E_g) and and cohesive energies (with respect to the most stable structure at U-J = 0 eV) in ferromagnetic (FM) and 1k-antiferromagnetic (AFM) configuration of (a) PuO₂ and (b) Pu₂O₃ as a function of the onsite Coulomb interaction parameter. For Pu₂O₃ a comparison of FM, 1k-AFM and R-AFM configuration (shown in Figure S1) is also shown.

The structural and electronic properties of PuO_2 and Pu_2O_3 in FM/AFM configuration presented in **Figure S2** show a very small variation as a function of the *U* parameter. For U = 3 eV, an overestimation of 1% is observed in the lattice parameter of PuO_2 and Pu_2O_3 compared to their respective experimental values. Further, when U increases from 3 to 5 eV, the lattice constant of PuO_2 and Pu_2O_3 increases by 0.5% and 0.3%, respectively. These are the order of magnitude of the usual PBE overestimation in interatomic distances. In this context it is important to note that *U*-ramping method was used throughout the study and atomic configurations were relaxed without symmetry constraints. Although the optimized structures are all non cubic, the lattice parameters shown on the **Figure S2** are calculated from the equilibrium volumes assuming structures to be cubic. In most of the cases the optimized structure is tetragonal/orthorhombic with b_0/a_0 and c_0/a_0 less than 1.005. We can therefore conclude that a small variation of *U* parameter of Pu^{4+} has a negligible impact on structural properties of PuO_2 and Pu_2O_3 . **Figure S2** also shows lattice parameters of PuO_2 and Pu_2O_3 in FM configuration which is lower compared to the AFM configuration. When *U* is increased from 3 to 5 eV, the electronic band gap (E_g) increases from 1.4 to 2.1 eV for PuO_2 and from 1.4 to 2.4 eV for Pu_2O_3 in 1-*k* AFM configuration. The values calculated for PuO_2 compare well with the available experimental value by McNeilly *et al.* [12] for the optimal value of U = 4 eV adopted in this study. The E_g values are almost identical in 1-*k* and Regulski AFM configuration of Pu_2O_3 . **Figure S2** also shows the variation of cohesive energies (with respect to the most stable structures at U-J = 0 eV (ΔE)) as a function of effective Hubbard parameter for PuO_2 and Pu_2O_3 in FM and AFM configurations. We find that the total energies of 1*k*-AFM and R-AFM of Pu_2O_3 are almost degenerate (as shown in **Figure S2(b)**).

Table 2 compares PBE and PBE+U calculated equilibrium lattice parameters (a_0) , band-gap energy (Eg), spin moments (µB) and cohesive energy differences between FM and AFM (EFM-EAFM) of PuO_2 with previous experiments and DFT calculated results. The PBE and PBE+U calculated a_0 is underestimation by 0.2% and overestimation by 1.1% of the experimental value [13], respectively, for 1k AFM. The difference between a₀ calculated for FM and AFM configuration is less than 0.3%. The lattice parameters predicted by DFT+U are larger than those from pure DFT. This is because DFT+U scheme favours the delocalization of Pu 5f electrons, consequently, Pu 5f electrons exhibit less participation to the bonding which leads to an increase of lattice parameter. Moreover, our a₀ values are in agreement with previous DFT calculated values. Our PBE+U calculated E_g value of 1.6 eV is underestimates experimental value of 1.8 eV and PBE predicts null band-gap for FM/AFM PuO₂. The PBE predicted band-gap for FM configuration is 25% lower compared to AFM configuration. Although our PBE+U predicted band-gap underestimates the previous PBE0 predicted band-gap, but matches well with previous PBE+U+SOC calculated value [10]. In our study the spin-orbit coupling (SOC) effect is neglected since taking it into account is computationally demanding and prevents the use of supercells sufficiently large (between 80 and 96 atoms) for the description of PuO_{2-x} oxides. Moreover, our test calculations and in many previous studies it has been shown to have negligible impact on the ground state properties of bulk PuO₂ and Pu₂O₃ [7-11]. The PBE predicts FM to be ground state and conversely PBE+U predicts AFM to be ground state (E_{FM} - E_{AFM} positive in **Table 2**). This is in agreement with previous PBE and PBE0 calculated values. Figure S2 also shows the variation of cohesive energies (with respect to the most stable structure at U-J = 0 eV) in FM and 1kAFM configuration of PuO_2 and AFM configuration is stable compared to FM in the range of *U-J* shown in figure. Therefore, PBE+*U* formalism lead to an AFM ground state with a net magnetic moment on plutonium atoms of around 4.1 μ_B which is not so far from the complete ionic limit of 4 μ_B .

Table 2: Equilibrium structural parameter (a_0), band-gap energy (E_g), spin moments (μ_B) and totalenergy differences (E_{FM} - E_{AFM}) are reported for PBE and PBE+U approximations of the exchange and correlation functional of PuO₂ and Pu₂O₃. In addition, we also show experimental values and DFT calculated results obtained by Prodan *et al.* [13]. All our results are obtained performing a complete relaxation of the geometry with U=4.7 eV and J=0.7 eV.

	Method	Lattice Constant (Å)		Band gap (eV)		E _{FM} -E _{AFM}	Magnetic Moment (µ _B)	
						(eV/formula		
		FM	AFM	FM	AFM	unit)	FM	AFM
PuO ₂	This study							
	PBE	5.382	5.386	0.0	0.0	-0.236	4.20	4.05
	PBE+U	5.446	5.460	1.0	1.6	+0.858	4.06	4.12
	Previous DFT							
	LSDA [13]	5.278	5.285	0.0	0.0	-0.310		
	PBE [13]	5.399	5.412	0.0	0.0	-0.259		
	PBE0 [13]	5.387	5.385	2.4	3.4	+0.014		
	PBE+SOC+U(=4)+QA [10]	-	5.466	-	1.6		-	3.82
	Experiment	5.398 [14]		1.8 [12]		≥ 0		
Pu ₂ O	This study							
3	PBE	10.85	10.94	0.0	1.7			
	PBE+U	11.18	11.20		1.7			5.02
	Previous DFT							
	PBE [9]	10.91	10.92					
	PBE+U [9]	11.18	11.20					
	PBE+SOC+U(=4)+QA [10]	-	11.204	-	1.6		-	4.72
	Experiment	11.05 [15,16]		> 0		> 0		

The PBE and PBE+U calculated a_0 is underestimated by 0.1% and overestimated by 1.4% of the experimental value **[15,16]**, respectively, for 1k-AFM Pu₂O₃. The difference between a_0 calculated for FM and AFM configurations is less than 0.3%. Moreover our a_0 values are in excellent agreement with previous DFT calculated values.

The PBE predicts FM to be ground state for Pu₂O₃, similar to PuO₂, and conversely PBE+U predicts

AFM to be ground state (E_{FM} - E_{AFM} is positive in **Table 2**). This is in agreement with previous PBE and PBE+*U* calculated values [9,10]. The magnetic moment on plutonium atoms of Pu₂O₃ is around 5.0 μ_B , larger than that of PuO₂.

[1] G. Jomard, B. Amadon, F. Bottin, M. Torrent, Phys. Rev. B: Condens. Matter Mater. Phys. 78 (2008) 075125.

[2] B. Dorado, B. Amadon, M. Freyss, M. Bertolus, Phys. Rev. B: Condens. Matter Mater. Phys. 79 (2009) 235125.

[3] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, Z. Szotek, W.M. Temmerman, A.P. Sutton, Phys. Status Solidi A 1998, 166, 429–443.

[4] Y. Yang, B. Wang, P. Zhang, J. Nucl. Mater. 433 (2013) 345-350.

[5] E. Vathonne, J. Wiktor, M. Freyss, G. Jomard, M. Bertolus, J. Phys.: Condens. Matter 26 (2014) 325501.

[6] B. Dorado, P. Garcia, Phys. Rev. B: Condens. Matter Mater. Phys. 87 (2013) 195139.

[7] A. Svane, L. Petit, Z. Szotek, and W. M. Temmerman, Phys. Rev. B 76 (2007) 115116.

[8] I. D. Prodan, G. E. Scuseria, and R. L. Martin, Phys. Rev. B 76 (2007) 033101.

[9] I. Prodan, G. Scuseria, J. Sordo, K. Kudin, and R. Martin, J. Chem. Phys. 123 (2005) 014703.

[10] Gérald Jomard, Bernard Amadon, François Bottin, and Marc Torrent, Phys. Rev. B 78 (2008) 075125.

[11] Yu Yang, Yong Lu, Ping Zhang, Journal of Nuclear Materials 452 (2014) 414-418.

[12] C.E. McNeilly, The electrical properties of plutonium oxides. J. Nucl. Mater. 11 (1964) 53-58.

[13] I. Prodan, G. Scuseria, J. Sordo, K. Kudin, and R. Martin, J. Chem. Phys. 123 (2005) 014703.

[14] J. M. Haschke, T. H. Allen, and L. A. Morales, Science 287, 285 (2000).

[15] IAEA Technical Reports Series, No. 79, International Atomic Energy Agency, Vienna, 1967.

[16] O. Wick, Plutonium Handbook: A Guide to the Technology (Lagrange Park, Illinois, 1980).